Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3575-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3575-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation
School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
Byongjun Hwang
School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
Adam William Bateson
Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, RG2 7PS, UK
Yevgeny Aksenov
National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK
Christopher Horvat
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
Department of Physics, University of Auckland,
Auckland, New Zealand
Related authors
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Aikaterini Tavri, Chris Horvat, Brodie Pearson, Guillaume Boutin, Anne Hansen, and Ara Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-3438, https://doi.org/10.5194/egusphere-2025-3438, 2025
Short summary
Short summary
In the Arctic, thin sea ice lets ocean waves travel into ice-covered areas. When waves, wind, and currents interact, they create Langmuir turbulence—strong mixing near the surface that helps move heat, gases, and nutrients between the ocean and air. Scientists understand this process in open water, but not well in polar regions. This study uses a new wave–ice model to find out where and how Langmuir turbulence affects ocean mixing in the Arctic.
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083, https://doi.org/10.5194/egusphere-2025-3083, 2025
Short summary
Short summary
The earth system model variables needed for studies of the ocean and sea ice are prioritized and requested.
Rebecca C. Frew, Adam William Bateson, Daniel L. Feltham, and David Schröder
The Cryosphere, 19, 2115–2132, https://doi.org/10.5194/tc-19-2115-2025, https://doi.org/10.5194/tc-19-2115-2025, 2025
Short summary
Short summary
As summer Arctic sea ice extent has retreated, the marginal ice zone (MIZ) has been widening and making up an increasing percentage of the summer sea ice. The MIZ is projected to become a larger percentage of the summer ice cover, as the Arctic transitions to ice-free summers. Using a sea ice model, we find that the processes and timing of sea ice loss differ in the MIZ to the rest of the sea cover. We also find the balance of processes within the MIZ changes over time as the sea ice retreats.
Christopher Horvat, Ellen M. Buckley, and Madelyn Stewart
EGUsphere, https://doi.org/10.5194/egusphere-2024-3864, https://doi.org/10.5194/egusphere-2024-3864, 2025
Short summary
Short summary
Since the late 1970s, standard methods for observing sea ice area from satellite contrast its passive microwave emissions to that of the ocean. Since 2018, a new satellite, ICESat-2, may offer a unique and independent way to sample sea ice area at high skill and resolution, using laser altimetry. We develop a new product of sea ice area for the Arctic using ICESat-2 and constrain the biases associated with the use of altimetry instead of passive microwave emissions.
Ellen M. Buckley, Christopher Horvat, and Pittayuth Yoosiri
EGUsphere, https://doi.org/10.5194/egusphere-2024-3861, https://doi.org/10.5194/egusphere-2024-3861, 2024
Short summary
Short summary
Sea ice coverage is a key indicator of changes in polar and global climate. There is a long (40+ year) record of sea ice concentration and area from passive microwave measurements. In this work we show the biases in these data based on high resolution imagery. We also suggest the use of ICESat-2, a high resolution satellite laser, that can supplement the passive microwave estimates.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024, https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
Short summary
Sea ice is heavily impacted by waves on its margins, and we currently do not have routine observations of waves in sea ice. Here we propose two methods to separate the surface waves from the sea-ice height observations along each ICESat-2 track using machine learning. Both methods together allow us to follow changes in the wave height through the sea ice.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Cited articles
Aksenov, Y., Popova, E. E., Yool, A., Nurser, A. J. G., Williams, T. D.,
Bertino, L., and Bergh, J.: On the future navigability of Arctic sea routes:
High-resolution projections of the Arctic Ocean and sea ice, Mar. Policy, 75, 300–317,
https://doi.org/10.1016/j.marpol.2015.12.027, 2017.
Aksenov, Y., Rynders, S., Feltham, D. L., Hosekova, L., Marsh, R., Skliris, N., Bertino, L., Williams, T. D., Popova, E., Yool, A., Nurser, A. J. G., Coward, A., Bricheno, L., Srokosz, M., and Heorton, H.: Safer Operations in Changing Ice-Covered Seas: Approaches and Perspectives, in: IUTAM Symposium on Physics and Mechanics of Sea Ice, edited by: Uhkuri, J. and Polojärvi, A., IUTAM Bookseries, vol 39. Springer, Cham, Espoo, Finland, 241–260, https://doi.org/10.1007/978-3-030-80439-8_12, 2022.
Arntsen, A. E., Song, A. J., Perovich, D. K., and Richter-Menge, J. A.:
Observations of the summer breakup of an Arctic sea ice cover, Geophys. Res.
Lett., 42, 8057–8063, https://doi.org/10.1002/2015GL065224, 2015.
Bateson, A. W.: Fragmentation and melting of the sea- sonal sea ice cover, PhD thesis, Department of Meteo- rology, University of Reading, United Kingdom, 293 pp., https://doi.org/10.48683/1926.00098821, 2021a.
Bateson, A. W.: Simulations of the Arctic sea ice comparing different approaches to modelling the floe size distribution and their respective impacts on the sea ice cover, University of Reading [data set], https://doi.org/10.17864/1947.300, 2021b.
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, 2020.
Bateson, A. W., Feltham, D. L., Schröder, D., Wang, Y., Hwang, B., Ridley, J. K., and Aksenov, Y.: Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity, The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, 2022.
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017.
Birnbaum, G. and Lüpkes, C.: A new parameterization of surface drag in
the marginal sea ice zone, Tellus A, 54, 107–123,
https://doi.org/10.3402/tellusa.v54i1.12121, 2002.
Bitz, C. M., Shell, K. M., Gent, P. R., Bailey, D. A., Danabasoglu, G., Armour, K. C., Holland, M. M., and Kiehl, J. T.: Climate Sensitivity of the Community Climate System Model, Version 4, 25, 3053–3070, https://doi.org/10.1175/JCLI-D-11-00290.1, 2012.
Brenner, S., Rainville, L., Thomson, J., Cole, S., and Lee, C.: Comparing
Observations and Parameterizations of Ice-Ocean Drag Through an Annual Cycle
Across the Beaufort Sea, J. Geophys. Res.-Oceans, 126, e2020JC016977,
https://doi.org/10.1029/2020JC016977, 2021.
Burroughs, S. M. and Tebbens, S. F.: Upper-truncated Power Laws in Natural
Systems, Pure Appl. Geophys., 158, 741–757,
https://doi.org/10.1007/PL00001202, 2001.
Cooper, V. T., Roach, L. A., Thomson, J., Brenner, S. D., Smith, M. M., Meylan, M. H., and Bitz, C. M.: Wind waves in sea ice of the western Arctic and a global coupled wave-ice model, Philos. T. R. Soc. A, 380, 20210258, https://doi.org/10.1098/rsta.2021.0258, 2022.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denton, A. A. and Timmermans, M.-L.: Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery, The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, 2022.
Dumas-Lefebvre, E. and Dumont, D.: Aerial observations of sea ice breakup by ship waves, The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023, 2023.
Dumont, D.: Marginal ice zone dynamics: history, definitions and research perspectives, Philos. T. R. Soc. A, 380, 20210253, https://doi.org/10.1098/rsta.2021.0253, 2022.
Feltham, D. L.: Granular flow in the marginal ice zone, Philos. Trans. R.
Soc. A Math. Phys. Eng. Sci., 363, 1677–1700,
https://doi.org/10.1098/RSTA.2005.1601, 2005.
Gherardi, M. and Lagomarsino, M. C.: Characterizing the size and shape of
sea ice floes, Sci. Rep., 5, 10226, https://doi.org/10.1038/srep10226, 2015.
Herman, A.: Sea-ice floe-size distribution in the context of spontaneous
scaling emergence in stochastic systems, Phys. Rev. E, 81, 066123,
https://doi.org/10.1103/PhysRevE.81.066123, 2010.
Herman, A.: Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model, The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017, 2017.
Herman, A., Evers, K.-U., and Reimer, N.: Floe-size distributions in laboratory ice broken by waves, The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018, 2018.
Herman, A., Wenta, M., and Cheng, S.: Sizes and Shapes of Sea Ice Floes Broken by Waves – A Case Study From the East Antarctic Coast, Front. Earth Sci., 9, 655977, https://doi.org/10.3389/feart.2021.655977, 2021.
Holt, B. and Martin, S.: The effect of a storm on the 1992 summer sea ice
cover of the Beaufort, Chukchi, and East Siberian Seas, J. Geophys. Res.-Oceans, 106, 1017–1032, https://doi.org/10.1029/1999JC000110, 2001.
Horvat, C.: Marginal ice zone fraction benchmarks sea ice and climate model
skill, Nat. Commun., 12, 2221, https://doi.org/10.1038/s41467-021-22004-7,
2021.
Horvat, C. and Roach, L. A.: WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture, Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, 2022.
Horvat, C. and Tziperman, E.: A prognostic model of the sea-ice floe size and thickness distribution, The Cryosphere, 9, 2119–2134, https://doi.org/10.5194/tc-9-2119-2015, 2015.
Horvat, C. and Tziperman, E.: The evolution of scaling laws in the sea ice
floe size distribution, J. Geophys. Res.-Oceans, 122, 7630–7650,
https://doi.org/10.1002/2016JC012573, 2017.
Horvat, C., Tziperman, E., and Campin, J. M.: Interaction of sea ice floe
size, ocean eddies, and sea ice melting, Geophys. Res. Lett., 43,
8083–8090, https://doi.org/10.1002/2016GL069742, 2016.
Horvat, C., Blanchard-Wrigglesworth, E., and Petty, A.: Observing Waves in
Sea Ice With ICESat-2, Geophys. Res. Lett., 47, e2020GL087629,
https://doi.org/10.1029/2020GL087629, 2020.
Hosekova, L., Aksenov, Y., Coward, A., Williams, T., Bertino, L., and Nurser, A. J. G.: Modelling Sea Ice and Surface Wave Interactions in Polar Regions, in: AGU Fall Meeting Abstracts, 15–18 December 2015, San Francisco, USA, GC34A-06, https://agu.confex.com/agu/fm15/webprogram/Paper72536.html (last access: 22 August 2023), 2015.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.1 LA-CC-06-012, Tech. Rep., Los Alamos National Laboratory, https://svn-ccsm-models.cgd.ucar.edu/cesm1/alphas/branches/cesm1_5_alpha04c_timers/components/cice/src/doc/cicedoc.pdf (last access: 14 August 2023), 2015.
Hwang, B., Ren, J., McCormack, S., Berry, C., Ayed, I. Ben, Graber, H. C.,
and Aptoula, E.: A practical algorithm for the retrieval of floe size
distribution of Arctic sea ice from high-resolution satellite Synthetic
Aperture Radar imagery, Elem. Sci. Anthr., 5, 38, https://doi.org/10.1525/elementa.154, 2017a.
Hwang, B., Wilkinson, J., Maksym, T., Graber, H. C., Schweiger, A., Horvat,
C., Perovich, D. K., Arntsen, A. E., Stanton, T. P., Ren, J., and Wadhams,
P.: Winter-to-summer transition of Arctic sea ice breakup and floe size
distribution in the Beaufort Sea, Elem. Sci. Anthr., 5, 40,
https://doi.org/10.1525/elementa.232, 2017b.
Hwang, B. and Wang, Y.: Multi-scale satellite observation of the Arctic sea
ice : a new insight into the life cycle of floe size distribution, Phil.
Trans. R. Soc. A, 380, 20210259, https://doi.org/10.1098/rsta.2021.0259, 2022.
Hwang, B. and Wang, Y.: High-resolution floe size distribution of Arctic sea ice 2000–2014 (Version 1.0), NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/6d65b406-237c-425d-9356-39b77ac30e85, 2023.
Japan Meteorological Agency: JRA-55: Japanese 55-year reanalysis, daily
3-hourly and 6-hourly data, Japan Meteorological Agency [data set], https://doi.org/10.5065/D6HH6H41,
2013.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kergomard, C.: Analyse morphometrique de la zone marginale de la banquise
polaire au nord-ouest du Spitsberg a partir de l'imagerie SPOT
panchromatique, Bulletin-Société Française de
Photogrammétrie et de Télédétection, 115, 17–19, 1989.
Kohout, A. L. and Meylan, M. H.: An elastic plate model for wave attenuation
and ice floe breaking in the marginal ice zone, J. Geophys. Res., 113,
C09016, https://doi.org/10.1029/2007JC004434, 2008.
Kwok, R.: Declassified high-resolution visible imagery for Arctic sea ice
investigations: An overview, Remote Sens. Environ., 142, 44–56,
https://doi.org/10.1016/j.rse.2013.11.015, 2014.
Kwok, R. and Untersteiner, N.: New high-resolution images of summer arctic
Sea ice, Eos, 92, 53–54,
https://doi.org/10.1029/2011EO070002, 2011.
LAND INFO Satellite Imagery Search Portal: https://search.landinfo.com/, last access: 8 August 2023.
Lüpkes, C., Gryanik, V. M., Hartmann, J., and Andreas, E. L.: A
parametrization, based on sea ice morphology, of the neutral atmospheric
drag coefficients for weather prediction and climate models, J. Geophys.
Res.-Atmos., 117, D13112, https://doi.org/10.1029/2012JD017630, 2012.
Martin, T., Tsamados, M., Schroeder, D., and Feltham, D. L.: The impact of
variable sea ice roughness on changes in Arctic Ocean surface stress: A
model study, J. Geophys. Res.-Oceans, 121, 1931–1952,
https://doi.org/10.1002/2015JC011186, 2016.
Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve:
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration,
Version 3, National Snow and Ice Data Center (NSIDC) [data set],
https://doi.org/10.7265/N59P2ZTG, 2017.
Meier, W. N., Petty, A., Hendricks, S., Perovich, D., Farrell, S., Webster, M., Divine, D., Gerland, S., Kaleschke, L., Ricker, R., and Tian-Kunze, X.: Sea ice, in: NOAA Arctic Report Card 2022, edited by: M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, NOAA, 22-06, 40–48, https://doi.org/10.25923/xyp2-vz45, 2022.
Melsheimer, C. and Spreen, G.: AMSR2 ASI sea ice concentration data, Arctic,
version 5.4 (NetCDF), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.898399, 2019.
Melsheimer, C. and Spreen, G.: AMSR-E ASI sea ice concentration data,
Arctic, version 5.4 (NetCDF), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.919777, 2020.
Meylan, M. H., Horvat, C., Bitz, C. M., and Bennetts, L. G.: A floe size
dependent scattering model in two- and three-dimensions for wave attenuation
by ice floes, Ocean Model., 161, 101779,
https://doi.org/10.1016/j.ocemod.2021.101779, 2021.
Mokus, N. G. A. and Montiel, F.: Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study, The Cryosphere, 16, 4447–4472, https://doi.org/10.5194/tc-16-4447-2022, 2022.
Montiel, F. and Mokus, N.: Theoretical framework for the emergent floe size distribution in the marginal ice zone: the case for log-normality, Philos. T. R. Soc. A, 380, 20210257, https://doi.org/10.1098/rsta.2021.0257, 2022.
Montiel, F. and Squire, V. A.: Modelling wave-induced sea ice break-up in the marginal ice zone, Proc. R. Soc. A Math. Phys. Eng. Sci., 473, 20170258, https://doi.org/10.1098/rspa.2017.0258, 2017.
Montiel, F., Squire, V. A., and Bennetts, L. G.: Attenuation and directional
spreading of ocean wave spectra in the marginal ice zone, J. Fluid Mech.,
790, 492–522, https://doi.org/10.1017/JFM.2016.21, 2016.
Passerotti, G., Bennetts, L. G., von Bock und Polach, F., Alberello, A., Puolakka, O., Dolatshah, A., Monbaliu, J., and Toffoli, A.: Interactions between Irregular Wave Fields and Sea Ice: A Physical Model for Wave Attenuation and Ice Breakup in an Ice Tank, J. Phys. Oceanogr., 52, 1431–1446, https://doi.org/10.1175/JPO-D-21-0238.1, 2022.
Perovich, D. K.: Aerial observations of the evolution of ice surface
conditions during summer, J. Geophys. Res., 107, 8048,
https://doi.org/10.1029/2000JC000449, 2002.
Perovich, D. K. and Jones, K. F.: The seasonal evolution of sea ice floe
size distribution, J. Geophys. Res.-Oceans, 119, 8767–8777,
https://doi.org/10.1002/2014JC010136, 2014.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring, Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013.
Petty, A. A., Holland, P. R., and Feltham, D. L.: Sea ice and the ocean mixed layer over the Antarctic shelf seas, The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, 2014.
Pringle, D. J., Eicken, H., Trodahl, H. J., and Backstrom, L. G. E.: Thermal
conductivity of landfast Antarctic and Arctic sea ice, J. Geophys. Res.-Oceans, 112, C04017, https://doi.org/10.1029/2006JC003641, 2007.
Ren, J., Hwang, B., Murray, P., Sakhalkar, S., and McCormack, S.: Effective SAR sea ice image segmentation and touch floe separation using a combined multi-stage approach, in: Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 26–31 July 2015, Milan, Italy, 1040–1043, https://doi.org/10.1109/IGARSS.2015.7325947, 2015.
Roach, L. A.: Model output: CICE experiments with varying floe and wave physics, Zenodo [data set], https://doi.org/10.5281/zenodo.3463580, 2019.
Roach, L. A., Horvat, C., Dean, S. M., and Bitz, C. M.: An Emergent Sea Ice
Floe Size Distribution in a Global Coupled Ocean-Sea Ice Model, J. Geophys. Res.-Oceans, 123, 4322–4337, https://doi.org/10.1029/2017JC013692, 2018a.
Roach, L. A., Smith, M. M., and Dean, S. M.: Quantifying Growth of Pancake
Sea Ice Floes Using Images From Drifting Buoys, J. Geophys. Res.-Oceans,
123, 2851–2866, https://doi.org/10.1002/2017JC013693, 2018b.
Roach, L. A., Bitz, C. M., Horvat, C., and Dean, S. M.: Advances in Modeling
Interactions Between Sea Ice and Ocean Surface Waves, J. Adv. Model. Earth
Syst., 11, 4167–4181, https://doi.org/10.1029/2019MS001836, 2019.
Rolph, R. J., Feltham, D. L., and Schröder, D.: Changes of the Arctic marginal ice zone during the satellite era, The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, 2020.
Rothrock, D. A. and Thorndike, A. S.: Measuring the sea ice floe size
distribution, J. Geophys. Res., 89, 6477,
https://doi.org/10.1029/JC089iC04p06477, 1984.
Rynders, S.: Impact of surface waves on sea ice and ocean in the polar
regions, PhD thesis, University of Southampton, United Kingdom, http://eprints.soton.ac.uk/id/eprint/428655 (last access: 14 August 2023), 2017.
Rynders, S., Aksenov, Y., Marsh, R., Skrilis, N., Hosekova, L.,
Feltham, D., Bertino, l., Srokosz, M., and Williams, T.: Sea hazards on offshore structures:
waves, currents, tides and sea ice combined, in: EGU General
Assembly Conference Abstracts, 8–13 April 2018, Vienna, Austria, vol. 20, EGU2018-8577-2, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-8577-2.pdf (last access: 22 August 2023), 2018.
Satellite Imaging Corporation, WorldView-1 Satellite Sensor: WorldView-1 Satellite Image, https://www.satimagingcorp.com/satellite-sensors/worldview-1/, last access: 16 February 2023.
Satellite Imaging Corporation, WorldView-2 Satellite Sensor: WorldView-2 Satellite Image, https://www.satimagingcorp.com/satellite-sensors/worldview-2/, last access: 16 February 2023.
Schröder, D., Feltham, D. L., Tsamados, M., Ridout, A., and Tilling, R.: New insight from CryoSat-2 sea ice thickness for sea ice modelling, The Cryosphere, 13, 125–139, https://doi.org/10.5194/tc-13-125-2019, 2019.
Shen, H. H., Hibler, W. D., and Leppäranta, M.: On applying granular
flow theory to a deforming broken ice field, Acta Mech., 63, 143–160,
https://doi.org/10.1007/BF01182545, 1986.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008.
Steele, M.: Sea ice melting and floe geometry in a simple ice-ocean model,
J. Geophys. Res., 97, 17729–17738, https://doi.org/10.1029/92jc01755, 1992.
Steele, M., Morison, J. H., and Untersteiner, N.: The partition of
air-ice-ocean momentum exchange as a function of ice concentration, floe
size, and draft, J. Geophys. Res.-Oceans, 94, 12739–12750,
https://doi.org/10.1029/JC094IC09P12739, 1989.
Steer, A., Worby, A., and Heil, P.: Observed changes in sea-ice floe size distribution during early summer in the western Weddell Sea, Deep-Sea Res. Pt. II, 55, 933–942, https://doi.org/10.1016/j.dsr2.2007.12.016, 2008.
Stern, H. L., Schweiger, A. J., Stark, M., Zhang, J., Steele, M., and Hwang,
B.: Seasonal evolution of the sea-ice floe size distribution in the Beaufort
and Chukchi seas, Elem. Sci. Anthr., 6, 48,
https://doi.org/10.1525/elementa.305, 2018a.
Stern, H. L., Schweiger, A. J., Zhang, J., and Steele, M.: On reconciling
disparate studies of the sea-ice floe size distribution, Elem. Sci. Anthr.,
6, 49, https://doi.org/10.1525/elementa.304, 2018b.
Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider in
summer and narrower in winter, Geophys. Res. Lett., 40, 4864–4868,
https://doi.org/10.1002/grl.50928, 2013.
The WAVEWATCH III Development Group: User manual and system
documentation of WAVEWATCH III, version 5.16, Tech.
Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf (last access: 14 August 2023), 2016.
Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean,
Geophys. Res. Lett., 41, 3136–3140, https://doi.org/10.1002/2014GL059983,
2014.
Toyota, T., Takatsuji, S., and Nakayama, M.: Characteristics of sea ice floe
size distribution in the seasonal ice zone, Geophys. Res. Lett., 33, L02616,
https://doi.org/10.1029/2005GL024556, 2006.
Toyota, T., Haas, C., and Tamura, T.: Size distribution and shape properties
of relatively small sea-ice floes in the Antarctic marginal ice zone in late
winter, Deep-Sea Res. Part II, 58, 1182–1193,
https://doi.org/10.1016/j.dsr2.2010.10.034, 2011.
Toyota, T., Kohout, A., and Fraser, A. D.: Formation processes of sea ice floe size distribution in the interior pack and its relationship to the
marginal ice zone off East Antarctica, Deep-Sea Res. Pt. II, 131, 28–40,
https://doi.org/10.1016/j.dsr2.2015.10.003, 2016.
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L.,
Kurtz, N., Laxon, S. W., and Bacon, S.: Impact of Variable Atmospheric and
Oceanic Form Drag on Simulations of Arctic Sea Ice, J. Phys. Oceanogr., 44,
1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014.
Tsamados, M., Feltham, D., Petty, A., Schroeder, D., and Flocco, D.:
Processes controlling surface, bottom and lateral melt of Arctic sea ice in
a state of the art sea ice model, Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci., 373, 20140167, https://doi.org/10.1098/rsta.2014.0167, 2015.
United States Geological Survey: Global Fiducials Library, United States Geological Survey [data set], https://www.usgs.gov/global-fiducials-library-data-access-portal, last access: 8 August 2023.
Wang, Y., Holt, B., Erick Rogers, W., Thomson, J., and Shen, H. H.: Wind and
wave influences on sea ice floe size and leads in the Beaufort and Chukchi
Seas during the summer-fall transition 2014, J. Geophys. Res.-Oceans, 121, 1502–1525,
https://doi.org/10.1002/2015JC011349, 2016.
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D., and Bertino,
L.: Wave-ice interactions in the marginal ice zone. Part 1: Theoretical
foundations, Ocean Model., 71, 81–91,
https://doi.org/10.1016/j.ocemod.2013.05.010, 2013a.
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D., and Bertino,
L.: Wave-ice interactions in the marginal ice zone. Part 2: Numerical
implementation and sensitivity studies along 1D transects of the ocean
surface, Ocean Model., 71, 92–101,
https://doi.org/10.1016/j.ocemod.2013.05.011, 2013b.
World Meteorological Organization: WMO sea-ice nomenclature, terminology,
codes, illustrated glossary and international system of sea-ice symbols,
Tech. Rep., WMO No. 259, https://library.wmo.int/doc_num.php?explnum_id=4651 (last access: 20 July 2022), 2014.
Zhang, J., Schweiger, A., Steele, M., and Stern, H.: Sea ice floe size
distribution in the marginal ice zone: Theory and numerical experiments, J. Geophys. Res.-Oceans, 120, 3484–3498, https://doi.org/10.1002/2015JC010770,
2015.
Zhang, J., Stern, H., Hwang, B., Schweiger, A., Steele, M., Stark, M., and
Graber, H. C.: Modeling the seasonal evolution of the Arctic sea ice floe
size distribution, Elem. Sci. Anthr., 4, 000126,
https://doi.org/10.12952/journal.elementa.000126, 2016.
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings point not only to the limitations in models but also to the need for more high-resolution observations to validate and calibrate models.
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays...