Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3535-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3535-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cast shadows reveal changes in glacier surface elevation
Monika Pfau
CORRESPONDING AUTHOR
Institute of Environmental Science and Geography, University of
Potsdam, 14476 Potsdam, Germany
Georg Veh
Institute of Environmental Science and Geography, University of
Potsdam, 14476 Potsdam, Germany
Wolfgang Schwanghart
Institute of Environmental Science and Geography, University of
Potsdam, 14476 Potsdam, Germany
Related authors
No articles found.
Nazaré Suziane Soares, Carlos Alexandre Gomes Costa, Till Francke, Christian Mohr, Wolfgang Schwanghart, and Pedro Henrique Augusto Medeiros
EGUsphere, https://doi.org/10.5194/egusphere-2025-884, https://doi.org/10.5194/egusphere-2025-884, 2025
Short summary
Short summary
We use drone surveys to map river intermittency in reaches and classify them into "Wet", "Transition", "Dry" or "Not Determined". We train Random Forest models with 40 candidate predictors, and select altitude, drainage area, distance from dams and dynamic predictors. We separate different models based on dynamic predictors: satellite indices (a) and (b); or (c) accumulated precipitation (30 days). Model (a) is the most successful in simulating intermittency both temporally and spatially.
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025, https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste than by overall mass loss over the entire glacier surface.
Miaomiao Qi, Shiyin Liu, Zhifang Zhao, Yongpeng Gao, Fuming Xie, Georg Veh, Letian Xiao, Jinlong Jing, Yu Zhu, and Kunpeng Wu
Hydrol. Earth Syst. Sci., 29, 969–982, https://doi.org/10.5194/hess-29-969-2025, https://doi.org/10.5194/hess-29-969-2025, 2025
Short summary
Short summary
Here we propose a new mathematically robust and cost-effective model to improve glacial lake water storage estimation. We have also provided a dataset of measured water storage in glacial lakes through field depth measurements. Our model incorporates an automated calculation process and outperforms previous ones, achieving an average relative error of only 14 %. This research offers a valuable tool for researchers seeking to improve the risk assessment of glacial lake outburst floods.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Wolfgang Schwanghart, Ankit Agarwal, Kristen Cook, Ugur Ozturk, Roopam Shukla, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 24, 3291–3297, https://doi.org/10.5194/nhess-24-3291-2024, https://doi.org/10.5194/nhess-24-3291-2024, 2024
Short summary
Short summary
The Himalayan landscape is particularly susceptible to extreme events, which interfere with increasing populations and the expansion of settlements and infrastructure. This preface introduces and summarizes the nine papers that are part of the special issue,
Estimating and predicting natural hazards and vulnerabilities in the Himalayan region.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Sebastian Vogel, Katja Emmerich, Ingmar Schröter, Eric Bönecke, Wolfgang Schwanghart, Jörg Rühlmann, Eckart Kramer, and Robin Gebbers
SOIL, 10, 321–333, https://doi.org/10.5194/soil-10-321-2024, https://doi.org/10.5194/soil-10-321-2024, 2024
Short summary
Short summary
To rapidly obtain high-resolution soil pH data, pH sensors can measure the pH value directly in the field under the current soil moisture (SM) conditions. The influence of SM on pH and on its measurement quality was studied. An SM increase causes a maximum pH increase of 1.5 units. With increasing SM, the sensor pH value approached the standard pH value measured in the laboratory. Thus, at high soil moisture, calibration of the sensor pH values to the standard pH value is negligible.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-295, https://doi.org/10.5194/nhess-2022-295, 2023
Manuscript not accepted for further review
Short summary
Short summary
The current socioeconomic development in the Himalayan region leads to a rapid expansion of the road network and an increase in the exposure to landslides. Our study along the NH-7 demonstrates the scale of this challenge as we detect more than one partially or fully road-blocking landslide per road kilometer. We identify the main controlling variables, i.e. slope angle, rainfall amount and lithology. As our approach uses a minimum of data, it can be extended to more complicated road networks.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
Cited articles
Azam, M. F., Kargel, J. S., Shea, J. M., Nepal, S., Haritashya, U. K.,
Srivastava, S., Maussion, F., Qazi, N., Chevallier, P., Dimri, A. P.,
Kulkarni, A. V., Cogley, J. G., and Bahuguna, I.: Glaciohydrology of the
Himalaya-Karakoram, Science, 373, 6557, https://doi.org/10.1126/science.abf3668, 2021.
Bauder, A., Funk, M., and Huss, M.: Ice-volume changes of selected glaciers
in the Swiss Alps since the end of the 19th century, Ann. Glaciol., 46,
145–149, https://doi.org/10.3189/172756407782871701, 2007.
Beedle, M. J., Menounos, B., and Wheate, R.: An evaluation of mass-balance
methods applied to Castle creek Glacier, British Columbia, Canada, J.
Glaciol., 60, 262–276, https://doi.org/10.3189/2014JoG13J091, 2014.
Belart, J. M. C., Magnússon, E., Berthier, E., Gunnlaugsson, Á.
Þ., Pálsson, F., Aðalgeirsdóttir, G., Jóhannesson, T.,
Thorsteinsson, T., and Björnsson, H.: Mass Balance of 14 Icelandic
Glaciers, 1945–2017: Spatial Variations and Links With Climate, Front.
Earth Sci., 8, 163, https://doi.org/10.3389/feart.2020.00163, 2020.
Berthier, E., Arnaud, Y., Vincent, C., and Rémy, F.: Biases of SRTM in
high-mountain areas: Implications for the monitoring of glacier volume
changes, Geophys. Res. Lett., 33, L08502, https://doi.org/10.1029/2006GL025862, 2006.
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011.
Brighenti, S., Tolotti, M., Bruno, M. C., Wharton, G., Pusch, M. T., and
Bertoldi, W.: Ecosystem shifts in Alpine streams under glacier retreat and
rock glacier thaw: A review, Sci. Total Environ., 675,
542–559,
https://doi.org/10.1016/j.scitotenv.2019.04.221, 2019.
Bürkner, P. C.: brms: An R Package for Bayesian Multilevel Models Using
Stan, J. Stat. Softw., 80, 1–28,
https://doi.org/10.18637/jss.v080.i01, 2017.
Cauvy-Fraunié, S. and Dangles, O.: A global synthesis of biodiversity
responses to glacier retreat, Nature Ecology & Evolution, 3,
1675–1685, https://doi.org/10.1038/s41559-019-1042-8, 2019.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Dehecq, A., Gardner, A. S., Alexandrov, O., McMichael, S., Hugonnet, R., Shean, D., and
Marty, M.: Automated Processing of Declassified KH-9 Hexagon Satellite Images for Global
Elevation Change Analysis Since the 1970s, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.566802, 2020.
De Ferranti, J.: Digital Elevation Data: SRTM Void Fill, Viewfinder
Panoramas,
http://www.viewfinderpanoramas.org/voidfill.html (last access: 28 August 2022), 2015.
Dematteis, N., Giordan, D., Crippa, B., and Monserrat, O.: Measuring Glacier
Elevation Change by Tracking Shadows on Satellite Monoscopic Optical Images,
IEEE Geosci. Remote S., 20, 1–5, https://doi.org/10.1109/LGRS.2022.3231659, 2023.
Earth Resources Observation and Science (EROS) Center: USGS EROS Archive – Landsat Archives – Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products, Earth Resources Observation and Science (EROS) Center [data set], https://doi.org/10.5066/F71835S6, 2018a.
Earth Resources Observation and Science (EROS) Center: USGS EROS Archive – Landsat Archives – Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Level-1 Data Products, Earth Resources Observation and Science (EROS) Center [data set], https://doi.org/10.5066/F7WH2P8G, 2018b.
Earth Resources Observation and Science (EROS) Center:
USGS EROS Archive – Landsat Archives – Landsat 4-5 Thematic Mapper (TM) Level-1 Data Products, Earth Resources Observation and Science (EROS) Center [data set], https://doi.org/10.5066/F7N015TQ. 2018c.
EROS (Earth Resources Observation And Science) Center: USGS EROS Archive –
Digital Elevation – Shuttle Radar Topography Mission (SRTM) Non-Void
Filled,
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non
(last access: 28 March 2023), 2018.
Farías-Barahona, D., Sommer, C., Sauter, T., Bannister, D., Seehaus, T.
C., Malz, P., Casassa, G., Mayewski, P. A., Turton, J. V., and Braun, M. H.:
Detailed quantification of glacier elevation and mass changes in South
Georgie, Environ. Res. Lett., 15, 34036, https://doi.org/10.1088/1748-9326/ab6b32, 2020.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Farinotti, D., Immerzeel, W. W., De Kok, R., Quincey, D. J., and Dehecq, A.:
Manifestations and mechanisms of the Karakoram glacier Anomaly, Nat.
Geosci., 13, 8–16, https://doi.org/10.1038/s41561-019-0513-5, 2020.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, 2005RG000183, https://doi.org/10.1029/2005RG000183, 2007.
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015.
Forsythe, N., Fowler, H. J., Li, X. F., Blenkinsop, S., and Pritchard, D.:
Karakoram temperature and glacial melt driven by regional atmospheric
circulation variability, Nat. Clim. Change, 7, 664–670, https://doi.org/10.1038/nclimate3361, 2017.
Fujita, K., Suzuki, R., Nuimura, T., and Sakai, A.: Performance of ASTER and
SRTM DEMs, and their potential for assessing glacial lakes in the Lunana
region, Bhutan Himalaya, J. Glaciol., 54, 220–228, https://doi.org/10.3189/002214308784886162, 2008.
Gardelle, J., Berthier, E., and Arnaud, Y.: Impact of resolution and radar
penetration on glacier elevation changes computed from DEM differencing, J.
Glaciol., 58, 419–422, https://doi.org/10.3189/2012JoG11J175, 2012.
Geyman, E. C., van Pelt, W. J. J., Maloof, A. C., Aas, H. F., and Kohler,
J.: Historical glacier change on Svalbard predicts doubling of mass loss by
2100, Nature, 601, 374–379, https://doi.org/10.1038/s41586-021-04314-4,
2022.
Gorokhovich, Y. and Voustianiouk, A.: Accuracy assessment of the processed
SRTM-based elevation data by CGIAR using field data from USA and Thailand
and its relation to the terrain characteristics, Remote Sens.
Environ., 104, 409–415, https://doi.org/10.1016/j.rse.2006.05.012, 2006.
Guth, P. L. and Geoffroy, T. M.: LiDAR point cloud and ICESat-2 evaluation
of 1 second global digital elevation models: Copernicus wins, T. GIS, 25, 2245–2261, https://doi.org/10.1111/tgis.12825, 2021.
Hewitt, K.: The Karakoram Anomaly? Glacier Expansion and the “Elevation
Effect”, Karakoram Himalaya, Mountain Research and Development, 25,
332–340, https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2, 2005.
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?, Earth Surf. Proc.
Land., 37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
IPCC: Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P.,
Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M.,
https://www.ipcc.ch/srocc/ (last access: 28 August 2022), 2019.
Kääb, A., Treichler, D., Nuth, C., and Berthier, E.: Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya, The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, 2015.
Kääb, A., Winsvold, S., Altena, B., Nuth, C., Nagler, T., and Wuite,
J.: Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and
Geometric Performance, and Application to Ice Velocity, Remote Sensing, 8, 598,
https://doi.org/10.3390/rs8070598, 2016.
Kruschke, J.: Doing Bayesian data analysis. A tutorial with R, JAGS, and
Stan, 2nd ed., Elsevier, ISBN 978-0-12-405888-0, 2014.
Leinss, S. and Bernhard, P.: TanDEM-X:Deriving InSAR Height Changes and
Velocity Dynamics of Great Aletsch Glacier, IEEE J. Sel. Top. Appl., 14, 4798–4815, https://doi.org/10.1109/JSTARS.2021.3078084, 2021.
Li, D., Lu, X., Overeem, I., Walling, D. E., Syvitski, J., Kettner, A. J.,
Bookhagen, B., Zhou, Y., and Zhang, T.: Exceptional increases in fluvial
sediment fluxes in a warmer and wetter High Mountain Asia, Science, 374, 599–603, https://doi.org/10.1126/science.abi9649, 2021.
Li, H., Xu, L., Shen, H., and Zhang, L.: A general variational framework
considering cast shadows for the topographic correction of remote sensing
imagery, ISPRS J. Photogramm., 117,
161–171,
https://doi.org/10.1016/j.isprsjprs.2016.03.021, 2016.
Liu, K., Song, C., Ke, L., Jiang, L., Pan, Y., and Ma, R.: Global
open-access DEM performances in Earth's most rugged region High Mountain
Asia: A multi-level assessment, Geomorphology 338, 16–26,
https://doi.org/10.1016/j.geomorph.2019.04.012, 2019.
Liu, W. and Wu, E. Y.: Comparison of non-linear mixture models: sub-pixel
classification, Remote Sens. Environ., 94, 145–154, https://doi.org/10.1016/j.rse.2004.09.004, 2005.
Lovell, A. M., Carr, J. R., and Stokes, C. R.: Topographic controls on the surging behaviour of
Sabche Glacier, Nepal (1967 to 2017), Remote Sensing of Environment, 210, 434–443,
https://doi.org/10.1016/j.rse.2018.03.036, 2018.
Mannerfelt, E. S., Dehecq, A., Hugonnet, R., Hodel, E., Huss, M., Bauder, A., and Farinotti, D.: Halving of Swiss glacier volume since 1931 observed from terrestrial image photogrammetry, The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, 2022.
Mayer, C., Lambrecht, A., Belò, M., Smiraglia, C., and Diolaiuti, G.:
Glaciological characteristics of the ablation zone of Baltoro glacier,
Karakoram, Pakistan, Ann. Glaciol., 43, 123–131, https://doi.org/10.3189/172756406781812087, 2006.
McElreath, R.: Statistical Rethinking, Chapman and Hall/CRC, 2nd Edn., ISBN 978-0-367-13991-9, 2020.
McNeil, C. J., Florentine, C. E., Bright, V. A. L., Fahey, M. J., McCann,
E., Larsen, C. F., Thomas, E. E., Shean, D. E., McKeon, L. A., March, R. S.,
Keller, W., Whorton, E. N., O'Neel, S., Baker, E. H., Sass, L. C., and
Bollen, K. E.: Geodetic Data for USGS Benchmark Glaciers: Orthophotos,
Digital Elevation Models, Glacier Boundaries and Surveyed Positions, version
2.0, US Geological Survey data release [data set], https://doi.org/10.5066/P9R8BP3K, 2022.
Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and
thickness of the world's glaciers, Nat. Geosci., 15, 124–129,
https://doi.org/10.1038/s41561-021-00885-z, 2022.
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E.,
Füreder, L., Cauvy-Fraunié, S., Gíslason. G. M., Jacobsen, D.,
Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S.,
Robinson, C. T., Traner, M., and Brown, L. E.: Glacier shrinkage driving
global changes in downstream systems, P. Natl. Acad.
Sci. USA, 114, 9770–9778, https://doi.org/10.1073/pnas.1619807114, 2017.
Minora, U., Senese, A., Bocchiola, D., Soncini, A., D'agata, C., Ambrosini,
R., Mayer, C., Lambrecht, A., Vuillermoz, E., Smiraglia, C., and Diolaitui,
G.: A simple model to evaluate ice melt over the ablation area of glaciers
in the Central Karakoram National Park, Pakistan, Ann. Glaciol., 56,
202–216, https://doi.org/10.3189/2015AoG70A206, 2015.
Moholdt, G., Nuth, C. Hagen, J. O., and Kohler, J.: Recent elevation changes
of Svalbard glaciers derived from ICESat laser altimetry, Remote Sens.
Environ., 114, 2756–2767, https://doi.org/10.1016/j.rse.2010.06.008, 2010.
Mukul, M., Srivastava, V., Jade, S., and Mukul, M.: Uncertainties in the
Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian
Himalaya and Peninsula, Sci. Rep., 7, 41672, https://doi.org/10.1038/srep41672, 2017.
Neckel, N., Kropáček, J., Bolch, T., and Hochschild, V.: Glacier
mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser
altimetry measurements, Environ. Res. Lett., 9, 14009, https://doi.org/10.1088/1748-9326/9/1/014009, 2014.
Paul, F., Andreassen, L. M., and Winsvold, S. H.: A new glacier inventory
for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and
changes since 1966, Ann. Glaciol., 52, 153–162,
https://doi.org/10.3189/172756411799096169, 2011.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.:
International Glaciological Society: The new remote-sensing-derived Swiss
glacier inventory: I. Methods, Ann. Glaciol., 34, 355–361, 2002.
Paul, F., Winsvold, S., Kääb, A., Nagler, T., and Schwaizer, G.:
Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents
and Surface Facies, and Comparison to Landsat 8, Remote Sensing, 8,
575, https://doi.org/10.3390/rs8070575, 2016.
Pfau, M., Veh, G., and Schwanghart, W.: Data for “Cast shadows reveal changes in glacier surface elevation” (Version 3), Zenodo [data set], https://doi.org/10.5281/zenodo.8087360, 2022.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B.
H., Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph
Glacier Inventory: A globally complete inventory of glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Porter, C., Howat, I., Noh, M. J., Husby, E., Khuvis, S., Danish, E., Tomko,
K., Gardiner, J., Nergrete, A., Yadav, B., Klassen, J., Kelleher, C.,
Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.:
ArcticDEM – Strips,
Version 4.1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/C98DVS, 2022.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from
drought stress, Nature, 569, 649–654, https://doi.org/10.1038/s41586-019-1240-1, 2019.
Purinton, B. and Bookhagen, B.: Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau, Earth Surf. Dynam., 5, 211–237, https://doi.org/10.5194/esurf-5-211-2017, 2017.
R Core Team: R: The R Project for Statistical Computing. Vienna, Austria,
https://www.r-project.org/
(last access: 17 August 2022), 2022.
Racoviteanu, A. and Williams, M. W.: Decision Tree and Texture Analysis for
Mapping Debris-Covered Glaciers in the Kangchenjunga Area, Eastern Himalaya,
Remote Sensing, 4, 3078–3109, https://doi.org/10.3390/rs4103078, 2012.
Rada Giacaman, C. A.: High-Precision Measurement of Height Differences from
Shadows in Non-Stereo Imagery: New Methodology and Accuracy Assessment,
Remote Sensing, 14, 1702, https://doi.org/10.3390/rs14071702, 2022.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the
Himalayas, Quatern. Int., 65–66, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Richter, R.: Correction of satellite imagery over mountainous terrain,
Appl. Optics, 37, 4004–4015,
https://doi.org/10.1364/AO.37.004004, 1998.
Schwanghart, W. and Scherler, D.: Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques, Earth Surf. Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, 2017.
Shean, D.: High Mountain Asia 8-meter DEM Mosaics Derived from Optical
Imagery, version 1, National Snow and Ice Data Center, https://doi.org/10.5067/KXOVQ9L172S2, 2017.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar,
A., Schwanghart, W., MCBride, S., Van Wyk de Vries, M., Mergili, M., Emmer,
A., Deschamps-Berger, C., MCDonnell, M., Bhambri, R., Allen, S., Berthier,
E., Carrivivk, J. L., Clague, J. J., Dokukin, M., Dunning, S. A., Frey, H.,
Gascoin, S., Haritashya, U. K., Huggel, C., Kääb, A., Kargel, J. S.,
Kavanaugh, J. L., Lacroix, P., Petley, D., Pupper, S., Azam, M. F., Cook, S.
J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes, J., Gnyawali, K. R.,
Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal,
S., Muhuri, A., Noetzli, J., Paul, F., Rashid, I., Sain, K., Steiner, J.,
Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice
avalanche caused the 2021 disaster at Chamoli, Indian Himalaya, Science, 373, 300–306, https://doi.org/10.1126/science.abh4455, 2021.
Stan Development Team: Stan Modeling Language Users Guide and Reference
Manual, version 2.30, https://mc-stan.org/ (last access: 17 August 2022), 2022.
Veh, G.: Script to estimate trends in glacier elevation change in shaded areas, Zenodo [code], https://doi.org/10.5281/zenodo.8269242, 2023.
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake
outburst floods, P. Natl. Acad. Sci.
USA, 117, 907–912, https://doi.org/10.1073/pnas.1914898117, 2020.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W.
B., Dweyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T.,
Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D., M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote,
E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status
of Landsat program, science, and applications, Remote Sens. Environ.,
225, 127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019.
Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M.
C., Johnson, D. M., Healey, S., Zuh, Z., Scambos, C. J., Masek, J. G.,
Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C.,
Huntington, J. L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A.,
Pekel, J. F., Strobel, P., and Cook, B. D.: Fifty years of Landsat science
and impacts, Remote Sens. Environ., 280, 113195, https://doi.org/10.1016/j.rse.2022.113195, 2022.
Zemp, M., Hoelzle, M., and Haeberli, W.: Distributed modelling of the
regional climatic equilibrium line altitude of glaciers in the European
Alps, Global Planet. Change, 56, 83–100, https://doi.org/10.1016/j.gloplacha.2006.07.002, 2007.
Short summary
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the length of shadows from surrounding mountains can be used to detect gains or losses in glacier elevation.
Cast shadows have been a recurring problem in remote sensing of glaciers. We show that the...