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Abstract. Increased rates of glacier retreat and thinning need
accurate local estimates of glacier elevation change to pre-
dict future changes in glacier runoff and their contribution
to sea level rise. Glacier elevation change is typically de-
rived from digital elevation models (DEMs) tied to surface
change analysis from satellite imagery. Yet, the rugged to-
pography in mountain regions can cast shadows onto glacier
surfaces, making it difficult to detect local glacier eleva-
tion changes in remote areas. A rather untapped resource
comprises precise, time-stamped metadata on the solar po-
sition and angle in satellite images. These data are useful
for simulating shadows from a given DEM. Accordingly,
any differences in shadow length between simulated and
mapped shadows in satellite images could indicate a change
in glacier elevation relative to the acquisition date of the
DEM. We tested this hypothesis at five selected glaciers with
long-term monitoring programmes. For each glacier, we pro-
jected cast shadows onto the glacier surface from freely avail-
able DEMs and compared simulated shadows to cast shad-
ows mapped from ∼ 40 years of Landsat images. We val-
idated the relative differences with geodetic measurements
of glacier elevation change where these shadows occurred.
We find that shadow-derived glacier elevation changes are
consistent with independent photogrammetric and geodetic
surveys in shaded areas. Accordingly, a shadow cast on Bal-
toro Glacier (the Karakoram, Pakistan) suggests no changes
in elevation between 1987 and 2020, while shadows on Great
Aletsch Glacier (Switzerland) point to negative thinning rates
of about 1 m yr−1 in our sample. Our estimates of glacier el-
evation change are tied to occurrence of mountain shadows
and may help complement field campaigns in regions that are
difficult to access. This information can be vital to quantify
possibly varying elevation-dependent changes in the accu-
mulation or ablation zone of a given glacier. Shadow-based
retrieval of glacier elevation changes hinges on the precision

of the DEM as the geometry of ridges and peaks constrains
the shadow that we cast on the glacier surface. Future gen-
erations of DEMs with higher resolution and accuracy will
improve our method, enriching the toolbox for tracking his-
torical glacier mass balances from satellite and aerial images.

1 Introduction

Quantifying spatial and temporal patterns of glacial changes
is important to understanding the response of the cryosphere
to ongoing atmospheric warming (IPCC, 2019). Changes in
glacier volume determine the availability of regional and lo-
cal freshwater resources that support the basic needs of many
millions of people living in glaciated river basins (IPCC,
2019; Pritchard, 2019; Azam et al., 2021). Glacier retreat can
shift ecosystems higher in elevation, changing the composi-
tion of, and possibly creating new, habitats (Brighenti et al.,
2019; Cauvy-Fraunié and Dangles, 2019). Shrinking glaciers
also alter discharge seasonality, enhance rates of sediment
transport, and shift biogeochemical and contaminant fluxes
in glaciated river basins (Milner et al., 2017; Li et al., 2021).
In high mountains, glacier retreat can also destabilise adja-
cent hillslopes, possibly enhancing the frequency and mag-
nitude of catastrophic slope failures (Huggel et al., 2012).
Other hazards to mountain communities evolve from new
meltwater lakes that can suddenly empty in glacial lake out-
burst floods (Veh et al., 2020). Recent appraisals imply that
ice loss has accelerated globally in past decades, with thin-
ning rates of glaciers outside the Antarctic and Greenland ice
sheets having doubled between 2000 and 2019 (Hugonnet
et al., 2021). Still, some 141 000 km3 of glacier ice covers
∼ 10% of Earth’s land surface today (Farinotti et al., 2019;
Millan et al., 2022). Given projected future warming sce-
narios, sustainable management of these remaining ice re-
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sources requires accurate knowledge of regional and local
mass balances (Richardson and Reynolds, 2000; Bolch et al.,
2011).

Measuring changes in the surface elevation of glaciers re-
lies on repeated field-based and remote-sensing-based sur-
veys. Spaceborne techniques such as laser altimetry (e.g.
ICESat) (Moholdt et al., 2010; Neckel et al., 2014), radar
interferometry (Farías-Barahona et al., 2020), or stereo-
photogrammetry (Bolch et al., 2011) have helped quantify
changes in glacier surface elevation over large spatial scales
and in terrain which is difficult to access. Few studies have
analysed periods exceeding the past 2 decades (Belart et al.,
2020; Geyman et al., 2022; Mannerfelt et al., 2022), with
a few exceptions such as the CORONA and HEXAGON
missions, which provided one-time stereo image pairs be-
tween the 1960s and 1970s (Lovell et al., 2018; Dehecq
et al., 2020). Other spaceborne-derived estimates of long-
term glacier changes have relied on time series of optical
satellite images yet without the capability of using stereo-
photogrammetry. The Landsat mission has been particularly
useful for mapping changes in glacier area, rather than in
elevation, primarily due to a continuous recording period
extending back to the 1970s, the high temporal revisit rate
of 16 d, and a moderate spatial resolution of 30 m in the
visible–shortwave infrared electromagnetic spectrum (Paul
et al., 2011; Wulder et al., 2019, 2022). However, questions
remain about how the dense catalogue of Landsat images can
be used to learn more about local changes in glacier eleva-
tion.

While optical satellite and aerial imagery provides the
longest remotely sensed records of glacier change, its anal-
ysis is challenging in topographic settings where high relief
casts shadows on highly reflective glacier surfaces (Kääb et
al., 2016). As mountains block the direct incoming solar ra-
diation, shaded glacier surfaces are characterised by a low
variation in radiometric values, thus complicating visual im-
age interpretation or automated approaches of image classi-
fication (Richter, 1998; Paul et al., 2002; Racoviteanu and
Williams, 2012; Li et al., 2016). The problem of cast shad-
ows increases with latitude, owing to seasonal differences in
the solar elevation angle, and with the height of mountains,
as those can cast wider shadows. Against these known limi-
tations, we hypothesise that cast shadows in optical satellite
images also have a largely untapped potential for mapping
glacier elevation changes. If the local glacier elevation has
changed in two successive time steps, the shape of shadows
emanating from adjacent mountains has to change accord-
ingly, as long as the solar elevation, azimuth, and geometry of
ridges and peaks remain constant (Fig. 1). Therefore, we ex-
pect that glacier thinning must locally cause longer shadows,
while a local gain in glacier thickness will shorten the length
of shadows. Using the tangent, the horizontal offset can be
converted into a vertical displacement, i.e. a change in eleva-
tion. These changes in elevation can also be translated into

estimates of glacier altitude using a digital elevation model
(DEM) as a reference (Fig. 1).

Few studies have explored the potential of cast shadows in
satellite images to detect surface changes of glaciers. A re-
cent study, for example, assessed ice-shelf freeboard heights
of the Abbot Ice Shelf, Antarctica (Rada Giacaman, 2022).
Another appraisal assessed the potential of the method for
Great Aletsch Glacier using Sentinel-2 for the period 2017–
2021 (Dematteis et al., 2023). Yet, the potential of cast shad-
ows in glacier geodetic surveys has remained unaddressed
for a broader geographic range and over longer timescales.
Here we address the question of how well, if at all, we can
measure elevation changes on glaciers based on the variabil-
ity in shadows cast by surrounding mountains. To this end,
we develop and test an approach that applies trigonometry
to time series of shadows extracted from Landsat satellite
images from 1986 to 2021, draped over local DEMs, in or-
der to identify local glacier surface changes. We validate this
method at five glaciers for which we have detailed informa-
tion on local glacier elevation changes.

2 Study sites

We selected glaciers in North America, Europe, and Cen-
tral Asia, spanning 20◦ of latitude in the Northern Hemi-
sphere (Fig. 2). Our selection was guided by the availabil-
ity of decadal time series of glacier mass balances and high-
resolution DEMs, as well as glacier outlines, providing a val-
idation of our analysis. The shadows cast on these glaciers
account for varying sun angles and surrounding relief, and
they occur in accumulation as well as ablation areas.

Great Aletsch Glacier is located in the Swiss Alps, offer-
ing one of the longest consecutive records of mass balances
in this mountain region (Bauder et al., 2007). The summit of
Dreieckhorn casts a pronounced shadow on the Great Aletsch
firn at ∼ 2950 m a.s.l., which is close to the estimated equi-
librium line altitude (ELA) of 2961 m during the period of
1971–1990 (Zemp et al., 2007). High and steep mountains
surround Baltoro Glacier in Pakistan. Mitre Peak creates a
nearly triangular shadow near Concordia (∼ 4500 m a.s.l.),
which is the confluence of Baltoro and Godwin-Austen
glaciers. This shadow is likely in the ablation zone, given
an ELA at ∼ 5200 m a.s.l. (Minora et al., 2015). The north-
ernmost glacier in our study is Gulkana Glacier (Alaska,
USA), shaded by Ogive Mountain at ∼ 1850 m a.s.l. in the
west and by Icefall Peak at ∼ 1800 m a.s.l. in the east. We
did not study the shadow near the tongue of Gulkana Glacier,
given that most Landsat images are acquired around solar lo-
cal noon when shadows are absent or very small. The ELA
of Gulkana Glacier ranged from 1811 to 2178 m a.s.l. be-
tween 2009 and 2019 (McNeil et al., 2022), so the shadows
were largely in the ablation zone. At South Cascade Glacier
(Washington, USA), Lizard Mountain has two peaks, which
form one coherent shadow on the glacier (∼ 2050 m a.s.l.).
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Figure 1. Effects of changing glacier elevation on the length of cast shadows. Example of modelled shadows on Gulkana Glacier, Alaska,
using digital elevation models and mapped glacier outlines in 2 distinct years from McNeil et al. (2022). (a) DEM and surface area (light
blue) of Gulkana Glacier in 1967. (b) DEM and surface area of Gulkana Glacier in 2018. (c) DEM from 2018 with shadows from 1967 and
2018. Shadows were calculated based on a sun elevation of 20◦ and sun azimuth of 135◦. The horizontal difference between the shadows
(arrow in c) is 210 m. (d) Diagram of the trigonometric relationship that predicts longer horizontal shadows under a constant sun elevation
β and mountain topography, assuming that the glacier maintains its topographic gradient α. In the example, the gain in shadow length at the
terminus of Gulkana Glacier translates into a glacier elevation change of ca. −76 m.

This shadow is above the ELA, which ranges between 1794
and 2042 m a.s.l. (1986 to 2018) (McNeil et al., 2022). Fi-
nally, Sperry Glacier (Montana, USA) is shaded at an alti-
tude of ∼ 2350 m a.s.l. by Gunsight Mountain. The shadow
is situated largely in the ablation zone, given an average ELA
at ∼ 2500 m a.s.l. for the period 2005–2019 (McNeil et al.,
2022).

3 Data and methods

3.1 Satellite images and DEMs

We obtained 30 m resolution Landsat images (Level 1 Pre-
cision and Terrain Correction, L1TP) to map shadows on
the glacier surface. To this end, we downloaded 69 cloud-
free Landsat images (45 from TM, two from ETM+, and 22
from OLI) with an acquisition period between 1986 and 2021
from the USGS EarthExplorer (https://earthexplorer.usgs.
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Figure 2. Maps of the five study regions. Images are false-colour composites (shortwave infrared (SWIR), blue, and green bands) from
Landsat OLI obtained in February 2015. Blue outlines are glaciers in the Randolph Glacier Inventory (RGI), V6.0. The semi-transparent areas
show the difference between the largest and smallest shadow mapped in Landsat images in our study period, which we use for comparison
with independent data and studies.

gov/, last access: 18 July 2023, Supplement Table S1). L1TP
images offer high radiometric and geodetic accuracy by us-
ing ground control points and correcting for topographic
displacement using regional DEMs (https://www.usgs.gov/
landsat-missions/landsat-levels-processing#L1TP, last ac-
cess: 18 July 2023). We could not find any notable offsets
between successive images in the time series.

We used several DEMs to simulate cast shadows for the
dates on which the Landsat images were acquired (Table S2).
For four glaciers, we used the DEM of the Shuttle Radar
Topography Mission (SRTM-1, 1 arcsec spatial resolution),
which corresponds to a spatial resolution of 30 m in the lo-
cal projection (Farr et al., 2007). Gulkana Glacier is located
beyond the maximum acquisition range of SRTM at 60◦ N.
We therefore used a 2 m stereo-photogrammetric DEM of
WorldView-1 data acquired in 2009, which is also part of
ArcticDEM (Porter et al., 2022). Owing to high vertical un-
certainties in SRTM data for rough topography (Mukul et
al., 2017; Liu et al., 2019), we used additional DEMs to en-
hance and validate our results. For Great Aletsch Glacier,
we obtained the swissALTI3D DEM (acquisition year 2017–
2018, version 2019, downsampled to 5 m spatial resolution
by merging multiple raster datasets). For Baltoro Glacier, we
replaced Mitre Peak (the source of the shadow cast on the
glacier) in the SRTM-1 DEM using data from the Viewfinder
Panoramas (VFP) project (De Ferranti, 2015). VFP is an

improved version of the SRTM DEM drawing on auxiliary
DEMs at locations where SRTM features voids or artefacts
due to phase-unwrapping errors. In the higher Himalayas,
the accuracy of the SRTM DEM decreases as elevation and
steepness increase (Mukul et al., 2017; Liu et al., 2019). In-
deed, the original SRTM-3 DEM (3 arcsec or approximately
90 m) features a void at Mitre Peak, suggesting that its eleva-
tion was interpolated (EROS, 2018). We therefore filled this
void using the VFP DEM while maintaining the elevation of
the glacier from the original SRTM DEM. We also compared
this modified shape of Mitre Peak against the original SRTM
and other freely available DEMs (see Sect. 3.5).

3.2 Workflow for estimating trends in glacier elevation
change in shaded areas

We created a binary mask of shaded and non-shaded areas
(Fig. 3a) by applying a user-defined threshold to the digital
numbers of the green band (encompassing a wavelength of
525–600 nm) of each Landsat scene (Supplement Table S1).
We found the green band useful because shadows appear to
be dark on the otherwise bright glacier surface. Snow, firn,
and ice have minimal absorption in the blue–green range,
whereas red and infrared light is strongly absorbed on these
surfaces. This trait enhances contrast at the interface be-
tween glaciated surfaces and shaded colder areas with in-
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creasing wavelength. The incoming and reflected electro-
magnetic wavelength in the green band is also less affected
by Rayleigh scattering in the atmosphere compared to the
blue band, which has a shorter wavelength. The green band
therefore offers a good compromise between contrast and
surface reflectance measured at the sensor and has been suc-
cessfully used in mapping glacier outlines (Paul et al., 2016).
For each Landsat image, we obtained the sun azimuth and
sun elevation from the associated metadata file. We used
these two parameters to simulate cast shadows using a ray-
tracing algorithm implemented in SAGA GIS V2.3.2 (Con-
rad et al., 2015). This algorithm returns a binary raster clas-
sifying each pixel as either shaded or non-shaded, equivalent
to our threshold-based mapping (Fig. 3b). We then calcu-
lated the difference in area between the modelled shadow and
shadows derived from Landsat images. We clipped the result-
ing polygons to the glacier outline in the Randolph Glacier
Inventory (RGI) V6.0 (Pfeffer et al., 2014) (Fig. 3c). Within
these difference polygons, we obtained the change in shadow
length using bearing lines at a regular horizontal spacing of
30 m (i.e. the cell size of Landsat images) in the direction
of the sun azimuth (Fig. 3d–f, Supplement Table S1). These
lines represent the incoming sun rays and are assumed to be
parallel, given that the sun is a far-distant, point-shaped light
source. Thus, the change in shadow length is considered rel-
atively short compared to the distance between Earth and the
sun. Artefacts in the bearing lines (Fig. 3e) appeared mainly
because of the limited resolution of the DEM and satellite
images (i.e. interrupted lines by pixel corners, shadows at
the bottom edge or in ice-free areas of the glacier), so we
removed them manually. Finally, we used the trigonometric
relationship of the law of tangents to convert the length of
each line to changes in elevation relative to the date when
the DEM was acquired (Fig. 1). Earth curvature could influ-
ence the length of the simulated shadows and thus the glacier
elevation changes but only in the millimetre range, and it is
therefore not considered in our analysis.

We scaled the elevation changes for each glacier so that the
median for the year 2000 is zero because in most cases the
data are relative to the elevation values in the SRTM DEM
from February 2000. The changes in glacier elevation in the
other years are therefore the positive or negative deviations
from the median in 2000.

We used a Bayesian multi-level linear regression model
to estimate linear trends in elevation change for each glacier
with time. Multi-level models can accommodate groups in
data, in our case different glaciers, within a single model.
We can thus estimate local effects at a given glacier with re-
spect to the entire population learned from all data regard-
less of their location. Multi-level models improve parame-
ter estimates for individual groups, in particular when dif-
fering sample sizes cause variance across the groups (McEl-
reath, 2020). Multi-level models are suitable for datasets
with different sample sizes in each group. In our case, one
glacier might have hundreds of bearing lines in a given year

(e.g. Great Aletsch Glacier) and others might have fewer data
(e.g. Gulkana Glacier, regarding the eastern shadow). The
hierarchical model structure avoids over-fitting parameters
for glaciers with many bearing lines and generally improves
inference for groups with few data points. The glaciers in-
form each other, given that groups are conditioned on the
data from all glaciers, reducing uncertainty in years with few
bearing lines at a given glacier. The parameters in the model
are drawn from distributions specified by population-level
(hyper-)parameters, which are also learned from the data.
The multi-level model returns the posterior distribution for
both population-level and group-level parameters.

Our likelihood function follows Student’s t distribution,
which is robust against outliers (Kruschke, 2014). We mod-
elled the trend in glacier elevation change 1h with year y
as

1hji ∼ t
(
µji, κ,ν

)
, for j = 1, . . .,J and i = 1, . . .,nj (1)

µji = αj +βjyji, for j = 1, . . .,J and i = 1, . . .,nj (2)[
αj
βj

]
∼MVNormal

((
α

β

)
,S

)
(3)

S =

(
σα 0
0 σβ

)
R

(
σα 0
0 σβ

)
(4)

R =

(
1 ς

ς 1

)
, (5)

where 1h denotes the elevation changes from bearing lines
in each year, i is an index for n bearing lines, and J is the
number of glaciers. The likelihood function has a location
parameter µ; κ is a positive scale parameter; and ν denotes
the degrees of freedom, fixed at ν = 3. The parameters αj
and βj are the intercepts and slopes for each group, respec-
tively, and α and β are the corresponding parameters at the
population level. The covariance matrix S of the multivari-
ate normal distribution (MVNormal) is composed of group-
level standard deviations σα and σβ , and R, the correlation
matrix with correlation ς . We choose the following priors to
model the parameters for the entire population and all groups
(i.e. the glaciers):

κ ∼N(0, 2.5) (6)
α ∼N(0, 2.5) (7)
β ∼N(0, 2.5) (8)
σα ∼N(0, 2.5) (9)
σβ ∼N(0, 2.5) (10)
R ∼ LKJCholesky(1) . (11)

These priors refer to standardised data pairs (1h and y)
with zero mean and unit standard deviation. Choosing wide
priors with a zero-mean Gaussian distribution and standard
deviation of 2.5 admits both negative and positive trends
for β, such that the posteriors are largely informed by the
data. We choose a Lewandowski–Kurowicka–Joe Cholesky
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Figure 3. Flowchart of modelling terrain shadows using the example of Great Aletsch Glacier. (a) Mapped shadows (green) using a digital
number threshold of 5500 in a Landsat 8 image. Background image is a false-colour composite using the SWIR, blue, and green bands, and
the glacier outline according to the RGI V6.0 is blue. (b) Modelled shadow (turquoise) using SAGA GIS, draped over the mapped shadow
in the Landsat image. (c) Extracted shadows by RGI and parallel bearing lines from the azimuth given in the Landsat metadata. (d) Lines
cut to the difference between the two shadows. (e) Close-up of (d) with generated lines of change in shadow length and unwanted artefacts.
(f) Artefacts at the bottom edge and along ice-free areas removed.

(LKJCholesky) correlation distribution prior for R so that all
correlation matrices are equally likely. We numerically ap-
proximate this posterior using a Hamiltonian sampling al-
gorithm implemented in Stan that is called via the software
package brms within the statistical programming language
R (Bürkner, 2017; R Core Team, 2022; Stan Development
Team, 2022). We ran three parallel chains with 6000 itera-
tions after 2000 warm-up runs, and we found that the Markov
chains converged (R̂ statistic = 1.0). We report the posterior
distributions of all model parameters in Table S3.

3.3 Comparison to reference DEMs and historical
maps

We compared our estimated trends in glacier elevation
change with trends from independent multi-temporal, high-
resolution DEMs in shaded areas. For all glaciers in North
America, we used repeated DEMs available for USGS
benchmark glaciers (McNeil et al., 2022). These DEMs have
spatial resolutions ranging between a few decimetres and
10 m, and they were derived from historic topographic maps,
aerial stereo-photography, and spaceborne imagery. For all
DEMs, we extracted the mean elevation change of all pix-
els between the edges of the largest and smallest mapped

shadows in the Landsat images, as the shape of the shad-
ows varies due to changing acquisition dates and sun an-
gles. For Great Aletsch Glacier, we obtained glacier elevation
changes from historical maps (Landeskarte at map scales of
1 : 25000 and 1 : 50000) available for 12 years between 1959
and 2020 from the Bundesamt für Landestopografie KOGIS
(Koordination, Geoinformation und Services; https://www.
swisstopo.admin.ch, last access: 26 March 2023). Moun-
tain peaks in these maps are labelled with elevation values,
and we consider them to have had stable terrain in the past
60 years. A sample of 10 peaks suggests positive and nega-
tive offsets of less than 5 m compared to the high-resolution
swissALTI3D DEM, making these maps suitable for vali-
dating our method over a period of more than 6 decades
(Fig. S1, Table S5). To infer elevation changes from contour
lines in historical maps, we manually chose four points with
a spacing of 1 km along a straight line in the flow direction
of the glacier within the area covered by the shaded glacier
(Fig. S1). For each map, we then extracted the glacier eleva-
tion at each point using linear interpolation and calculated
the average elevation change from these points. We could
not find any historical elevation data for Baltoro Glacier that
would be suitable for comparison.
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We used the same multi-level structure as above (Eqs. 1–
11) to determine the trends in glacier elevation change from
glaciers with repeat, high-resolution DEMs. To this end, we
conditioned the model on J = 5 glacier shadows (excluding
Baltoro), chose the same priors, and maintained the setup of
the Hamiltonian sampler. We trained two models, one with
all available data and one with data limited to the Landsat
period, to make trends comparable to our study period. In
both cases, we found that all chains converged (R̂ = 1.0), and
we report all model parameters in Table S4.

3.4 Comparison to glacier elevation changes from
Hugonnet et al. (2021)

In addition, we compared the elevation changes of our six
study glaciers with time series from Hugonnet et al. (2021).
In their study, the entire archive of satellite images from
the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) mission was automatically assem-
bled into DEMs, stacked, and co-registered with other DEMs
from the ArcticDEM at a spatial resolution of 100m×100m.
In general, each pixel is covered by several dozen DEMs over
the period 2000 to 2019. Noise and artefacts in the DEMs
that would lead to excessively strong rates of glacier eleva-
tion change are iteratively filtered from the time series by
several fixed thresholds and deviations from the reference
TanDEM-X DEM, as well as by a Gaussian process (GP) re-
gression model. Unlike our linear regression model, the GP
regression model allows for seasonal, periodic oscillations in
glacier elevation, so the interpolated time series of glacier
elevations show seasonal variations. We used time series of
glacier elevation change extracted from the area between the
largest and the smallest shadow (Fig. 2), provided as sum-
mary statistics on mean glacier elevation change between
2000 and 2019 by Romain Hugonnet (personal communica-
tion, 2023) (Fig. 6). For comparison, we shortened our study
period to 2000–2019 and fit the Bayesian hierarchical model
with the same structure and parameterisation as above.

3.5 Sensitivity of cast shadows against globally
available DEMs

The choice of the DEM may bias our estimates of glacier
elevation changes because the DEMs can have different spa-
tial resolutions, artefacts, and horizontal and vertical errors,
e.g. due to foreshortening, layover, and shadow effects in
radar data. These uncertainties propagate into modelled cast
shadows and likely change the inference on glacier elevation
change derived from different globally available DEMs (Ta-
ble S2). Using Great Aletsch Glacier and Baltoro Glacier,
we quantitatively and qualitatively assessed the impact of the
underlying DEM on the modelled shadows.

Great Aletsch Glacier provides seven freely available
DEMs. From OpenTopography (https://opentopography.
org/, last access: 18 July 2023), we obtained two SRTM

DEMs (SRTM-1 with 30 m and SRTM-3 with 90 m spatial
resolution), NASADEM (a reanalysis of SRTM data with
30 m resolution), ALOS World 3D (AW3D30 with 30 m),
and two Copernicus DEMs (GLO-30 with 30 m and GLO-90
with 90 m). We compared the DEM-derived shadows to those
from the lidar-based swissALTI3D DEM, which we treat as
the benchmark. In each simulation, we use a sun azimuth of
135◦ and sun elevation of 25◦ to determine how much the
modelled shadow varies in shape and extent as a function
of the input DEM. Accordingly, more recent DEMs should
generate longer shadows if the glacier has gradually thinned
during that period. We also studied the role of the DEM res-
olution in Landsat-derived shadows at Great Aletsch Glacier.
In theory, choosing a DEM resolution coarser than Landsat
(30 m) could increase the noise in the bearing lines, as one
DEM pixel would cover several Landsat pixels and thus sev-
eral bearing lines. To test this idea, we calculated the dif-
ference between the shadow mapped from Landsat images
and the shadow simulated from three input DEMs. We then
compared the variance of elevation change with time using
bearing lines drawn through the swissALTI3D DEM (5 m,
highest resolution), SRTM-1 (30 m, medium resolution, cor-
responding to that of the Landsat images), and the GLO-90
DEM (90 m, lowest resolution).

The example of Baltoro Glacier addresses the impact of
the unknown elevation of Mitre Peak on the size and shape
of the cast shadow. The SRTM data have gaps, so the peak
is not well represented by the data, and the High Moun-
tain Asia 8 m DEM (Shean, 2017) has wide data gaps on
the west-facing slopes of Mitre Peak. Therefore, we took the
void-filled SRTM-1 and SRTM-3 products as a basis; cut out
Mitre Peak from these DEMs; and inserted the raster values
from AW3D30, NASADEM, GLO-30, GLO-90, and VFP
for the peak. We then mapped the shadow from a Landsat
image obtained in February 2000 (the acquisition period of
SRTM), and compared its shape against a modelled shadow
using these modified input DEMs and the azimuth and el-
evation angle from the Landsat image. We assume that the
DEM with the smallest differences between modelled and
mapped shadows is most suitable for representing mountain
peaks and thus elevation changes.

4 Results

4.1 Glacier elevation changes from cast shadows

In each Landsat scene, between 20–110 bearing lines (2.5 %–
97.5 % of the distribution; median is 31) with a regular spac-
ing of 30 m pass through the mapped shadows on the five
selected glaciers (Supplement Table S1). Individual bearing
lines suggest the lowest variance in glacier elevation change
at Sperry Glacier (−22 to +5 m; 2.5 % and 97.5 % of the
distribution) and the highest variance at Gulkana West (−94
to +30 m), when adjusting elevation changes relative to the
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year 2000. Our analysis of trends in glacier elevation changes
suggests that Gulkana West and Great Aletsch Glacier had
the highest annual rates of thinning of −1.21+0.15/−0.16 and
−1.08+0.05/−0.05 m yr−1, respectively (mean and 95 % high-
est density interval, HDI). The mean elevation change in
the western, lower-lying branch of Gulkana Glacier is about
10 times more negative than that of the eastern, higher-
lying branch. Shaded surfaces on Sperry and South Cascade
glaciers have lost on average about 0.4 m yr−1 since the late
1980s. The eastern arm of Gulkana Glacier has been thinning
at a credible negative, albeit low, annual rate, while the sur-
face of Baltoro Glacier has shown no change in recent years
(Fig. 4).

4.2 Comparison with reference DEMs

Our estimated trends from bearing lines match the trends
obtained from high-resolution DEMs and historical maps
(Fig. 5). However, uncertainties in the trends calculated from
the reference DEMs are consistently higher given that fewer
data enter the hierarchical regression model, especially if we
fit the model only to data from DEMs obtained during the
shorter Landsat period. At Great Aletsch Glacier, we find
similar trends in mean glacier elevation change between our
method (−1.08+0.05/−0.05 m yr−1) and the reference DEMs,
regardless if we evaluate all available DEMs dating back
to 1959 (−1.06+0.27/−0.31 m yr−1) or only those DEMs ob-
tained during the shorter Landsat period (−0.88+0.49/−0.76)
(Fig. 5). At South Cascade Glacier, the mean trend from
the high-resolution DEMs is more than twice that of the
trends obtained from bearing lines (−1.06+0.54/−0.45 vs.
−0.41+0.1/−0.11 m yr−1). Trends are more consistent, how-
ever, if we consider all available data from South Cascade
Glacier, extending back to the late 1950s (Fig. 5). For the
two shadows at Gulkana Glacier, the mean trends from the
DEMs during the Landsat period are negative and midway
between the very high and low values that we had determined
for the two arms. Trends in historical DEMs are difficult to
determine at Sperry Glacier because only two observations
inform the multi-level model during the Landsat period.

4.3 Comparison with data from Hugonnet et al. (2021)

If we reduce our study period to 2000–2019, we find that
our trends generally follow those of Hugonnet et al. (2021)
(Fig. 6). The exception is Gulkana East, where our esti-
mated mean rate of glacier elevation change is twice as
high. The most negative trends in both methods occurred at
Great Aletsch Glacier. With the exception of 1 year on Great
Aletsch and Gulkana East glaciers, the Gaussian process re-
gression models of Hugonnet et al. (2021) overlap with our
data (yellow interquartile ranges of the boxes in Fig. 6), in-
dicating good agreement between the two methods. One rea-
son for some of the discrepancy between the two datasets
may be the rigorous filtering of outliers in the dataset of

Hugonnet et al. (2021), whereas our method maintains the
elevation changes of all bearing lines, regardless of their dis-
tances from the mean or median.

4.4 Influence of DEM type and resolution

We conducted the shadow-based detection of glacier eleva-
tion changes with three DEMs for Great Aletsch Glacier
(Fig. 7). The lengths of bearing lines between shadows (and
derived elevation changes) vary substantially, but the shapes
of nonparametric regression curves are consistent between
the different DEMs. Apart from these trends, residuals from
these trends are affected by the underlying DEM. Residuals
of SRTM-1 and GLO-90 had a high standard deviation of
18.2 and 26.8 m. Residuals are lowest for the swissALTI3D
DEM at a standard deviation of 14.3 m, suggesting that an in-
crease in DEM resolution may improve the precision of our
method.

4.5 Comparison of shadows derived from DEMs

The elevation changes obtained from bearing lines have sub-
stantial variance in a given year (Fig. 4), despite covering
a small range in elevation along the glacier. We infer that
DEM resolution and quality have important controls on esti-
mated glacier elevation changes from cast shadows. Indeed,
the example of Great Aletsch Glacier shows that different
DEMs produce shadows of different lengths, even with a
constant sun azimuth and elevation (Figs. 8, 9). This varia-
tion reflects limits in the DEM resolution and the represen-
tation of ridge lines. The acquisition date may also play a
role, assuming that ongoing thinning might produce longer
shadows in more recent DEMs. In our example, shadows pro-
jected from the swissALTI3D DEM (5 m spatial resolution,
acquisition in 2017 and 2018) extend farthest to the north
(Fig. 8a). The large shadow area thus likely follows both
from the reported decadal glacier thinning and from a more
precise representation of the ridge line and the surround-
ing topography (Fig. 8a). Shadows from the GLO-30 DEM
(acquisition date 2011–2015, ∼ 30 m spatial resolution) are
very similar to those derived from the swissALTI3D DEM
(Figs. 8b, 9). We also find the smallest variance in shadow
length for the GLO-30 DEM (Fig. 9). Shadows derived from
the GLO-90 DEM (∼ 90 m resolution) show both a larger
spatial offset (Fig. 8c) and a higher variability in shadow
length (Fig. 9). We attribute this mismatch to a higher degree
of spatial averaging, causing lower topographic ridges due
to the coarser spatial resolution. Shadows derived from the
AW3D30 DEM (acquisition period between 2006 and 2011,
∼ 30 m spatial resolution) are highly variable compared to
the swissALTI3D DEM (Fig. 8d). Some of the shadows ex-
tend beyond those derived from the swissALTI3D DEM, an
effect of exaggerated topography in the DEM that overesti-
mates the height of the ridge (Fig. 9). Finally, shadows de-
rived from the SRTM DEMs and NASADEM (Fig. 8e–g) –
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Figure 4. Trends in mean elevation change on shaded glacier surfaces. Boxplots show annual glacier elevation changes, which we have
derived from bearing lines drawn through shadows in Landsat images. Values of elevation change are relative to the median value in 2000
(for Gulkana Glacier in 1999). Boxes encompass the interquartile range, whiskers are 1.5 times the interquartile range, and horizontal lines
are the median. Outliers (lowest and highest percent in the distribution) are removed. The thick black line is the mean posterior trend, and
brown shading is the 95 % highest density interval (HDI). Numbers in the lower-left corner summarise the posterior distribution of the trend
in glacier elevation change, including the median, the lower 2.5 %, and the upper 97.5 % of the HDI.

Figure 5. Reported glacier elevation changes in five areas of shadow on four glaciers derived from reference DEMs. All values are relative to
the first observation for each glacier, which is set to zero. Black bubbles are observations when Landsat images are available at a given glacier
(see trends in Fig. 4). Grey bubbles mark data obtained before the Landsat period. Shades, thick lines, and numbers refer to models that are
fit to all data from the entire period (orange) and to data for the Landsat period only (blue). Numbers in the left-lower corner summarise the
posterior distribution of the annual trend in glacier elevation change, including the median, the lower 2.5 %, and the upper 97.5 % of the HDI.

all derived from data acquired from the same shuttle mission
in 2000 – show the highest difference from the swissALTI3D
DEM. SRTM DEMs and NASADEM-derived shadows are
very similar, but again, the coarser SRTM-3 DEM leads to a
lowering of the ridges and larger horizontal distances.

The absence of high-resolution data and presence of voids
in the SRTM data covering Baltoro Glacier and Mitre Peak
prompted us to use the VFP DEM to obtain the shape of the
steep and peaked mountain. We assume that the unknown ac-
quisition date of topographic data in the VFP DEM has little
impact on our subsequent analysis as Mitre Peak is free of

glacier ice and no major rockfalls were reported during our
study period that could have reduced its elevation. To eval-
uate this choice, we compared the modelled shadows based
on elevation data of Mitre Peak obtained from all DEMs with
the actual shadows cast by the mountain in 2020 (Fig. 10).
The VFP DEM has a spatial resolution of 3 arcsec (90 m),
which suggests that it will perform less well than the other
DEMs with higher resolution. However, visual comparison
shows that the VFP DEM captures the actual shadows more
precisely, which is consistent with > 100 m higher peak ele-
vations than those contained in the other DEMs (Fig. 10).
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Figure 6. Glacier elevation changes in shaded areas using our method and that of Hugonnet et al. (2021) for data between 2000 and 2019. All
values are relative to the year 2000, which is set to zero. Yellow colours refer to our method, and blue colours are trends of glacier elevation
change using Gaussian process (GP) regression through time series of ASTER DEMs from Hugonnet et al. (2021). Boxes encompass the
interquartile range, whiskers are 1.5 times the interquartile range, and horizontal lines are the median. Outliers (lowest and highest percent in
the distribution) are removed. The thick yellow line is the median posterior trend, and light-yellow shading is the 95 % highest density interval
(HDI). Yellow numbers in the lower-left corner are our posterior estimate of the annual trend in glacier elevation change, including the mean,
the lower 2.5 %, and the upper 97.5 % of the HDI. Blue numbers are the mean annual trend and 1σ error from Hugonnet et al. (2021).

Figure 7. Glacier elevation changes of Great Aletsch Glacier (see extent in Fig. 3) based on Landsat imagery and modelled shadows derived
from three digital elevation models (DEMs). Semi-transparent blue points show the elevation change derived from the length of individual
bearing lines between Landsat-derived shadows and those modelled from (a) the 30 m SRTM-1 DEM, (b) the 90 m GLO-90 DEM, and
(c) the 5 m swissALTI3D DEM. Black lines are the means from a LOWESS (locally weighted scatterplot smoothing) regression of elevation
change against time. Dashed red lines are bootstrapped confidence intervals (±2σ ).

In summary, variations in modelled shadows obtained
from different DEMs not only relate to variable acquisition
dates but also reflect how accurately ridge topography is rep-
resented in the DEMs. Comparison of DEMs with the same
acquisition date but different spatial resolution shows that
coarser DEMs underestimate ridge height and commensu-
rately shadow length. Notwithstanding, a general trend to-
wards longer shadows and thus a trend towards lower glacier

elevations can be observed for younger acquisition dates
(Fig. 9).

5 Discussion

We developed and assessed a method that measures glacier
elevation changes in remote areas based on cast shadows
from adjacent mountains. The precision and accuracy of the
method depend on several factors that pertain to the indi-
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Figure 8. Shadows projected onto Great Aletsch Glacier using different digital elevation models. (a–g) Grey hillshade shows the simulated
cast shadow using a sun azimuth of 135◦ and elevation of 25◦. (h) Close-up of the shadow outlines modelled with different DEMs. Hillshade
in the background is from the swissALTI3D DEM.

vidual processing steps and the input data (Rada Giacaman,
2022). We show that DEM quality and resolution cause vari-
ability in the detected elevation changes (Figs. 7–9). To this
end, we assessed the length of bearing lines that link the
shadow outlines along the azimuth direction. We find that
spatial resolution affects the precision and accuracy of these
lines (Fig. 7). First, DEMs with coarser resolution decrease
the precision due to spatial averaging, blurring ridge topogra-
phy by smoothing peaks and saddles (Purinton and Bookha-
gen, 2017). This effect may be more pronounced in SRTM
data, which can have high errors on steep slopes and of-
ten poorly represent ridges and valley bottoms (Gorokhovich
and Voustianiouk, 2006; Schwanghart and Scherler, 2017).
Coarser resolution also biases or decreases the accuracy of
our estimates because DEM values along ridges are lowered
by spatial averaging (Fujita et al., 2008). Both effects entail
that modelled shadow outlines on glaciers increasingly lack
detail and underestimate shadow length with coarser DEM
resolution (Fig. 9). Poor quality of the underlying DEM will

propagate into our estimates of glacier elevation change al-
though trends derived from different DEMs are surprisingly
consistent (Fig. 7). Cast shadows from satellite imagery ob-
tained for the date of DEM acquisition can help quantify and
correct for such biases.

Besides differences in resolution, the type of DEM also
impacts the precision and accuracy of modelled shadows.
Our analysis shows that among the DEMs with global
coverage, the new GLO-30 DEM has the highest preci-
sion of derived shadows when compared to the benchmark
swissALTI3D DEM (Fig. 9), which is consistent with re-
cent DEM assessments that underscore the high performance
of the GLO-30 DEM (Guth and Geoffroy, 2021). Shadow
outlines calculated from NASADEM and SRTM-1 are sim-
ilar as they are obtained from the same data. We acknowl-
edge that our method leaves any effects of synthetic aper-
ture radar (SAR) penetration into the snowpack covering the
glacier ice (Berthier et al., 2006) unconsidered. Yet, this off-
set can be treated as a constant when drawing bearing lines
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Figure 9. Difference in the lengths (and corresponding elevation changes) of bearing lines crossing a shadow on Great Aletsch Glacier using
six DEMs and the benchmark swissALTI3D DEM.

through shadows, given that the input DEM (SRTM) remains
unchanged in our analysis. Snow cover can be thick in accu-
mulation areas and may lead to biases (underestimates) when
calculating glacier volume changes from DEM differencing
(Gardelle et al., 2012). Though most shadows in our cases
are in ablation zones, we recommend accounting for differ-
ing penetration depth in future studies that also include shad-
ows on glaciers at very high elevations in snow accumulation
areas. The relatively low performance of the AW3D30 DEM
in comparison to other global DEMs likely relates to hill-
slope and ridge artefacts caused by errors in optical DEM
generation (Purinton and Bookhagen, 2017). Where steep
topography severely impacts DEM quality, manually edited
DEMs such as the VFP DEM can provide a viable alterna-
tive despite their relatively coarse spatial resolution. In any
case, our Bayesian framework objectively propagates these
errors and uncertainties. One promising avenue for future re-
search is to use more informed priors based on previous re-
search on glacier elevation change (Hugonnet et al., 2021).
Narrower and stronger priors may reduce the width of our
posterior trends on glacier elevation changes that we cur-
rently observe at Sperry Glacier for example (Fig. 4). They
might also offer a better compromise to balance some of the
differences within our data (e.g. between Gulkana East and
Gulkana West) and also between our data and data from pre-
vious research. One of these examples may be the outstand-
ing trend at Gulkana West (Fig. 6), where the physical causes
and methodological differences between our appraisals and
the appraisal of Hugonnet et al. (2021) remain to be deter-
mined.

In addition to the resolution and quality of the DEM, we
expect that higher image resolution will warrant a higher ac-
curacy and precision at which elevation changes can be de-
tected (Fig. 7). We refrained from analysing the effects of im-
age resolution because we used only Landsat imagery, which
comprises the longest freely available time series of satellite
imagery. We recall that our trigonometric approach hinges
on sun elevation and image resolution provided in the im-
age metadata, both setting the detection limit of elevation
changes. For example, for a sun elevation of 20◦ and a spatial
resolution of 30 m, a minimum elevation change of 10.9 m
can be detected, unless subpixel classification approaches or
pan-sharpening techniques are adopted (Liu and Wu, 2005).
The sun angle will be critical for our method (Rada Giaca-
man, 2022), and we expect that our approach works better for
images acquired during the winter months of the respective
hemispheres as well as at higher latitudes. To determine in-
terannual trends, we recommend using satellite imagery with
similar time stamps within a year, given that glacier eleva-
tions are prone to seasonal variations (Moholdt et al., 2010).

Atmospheric refraction – the bending of solar light as it
traverses the atmosphere – causes an apparently higher sun
elevation. The offset between the actual and apparent solar
position leads to errors in shadow-height applications de-
pending mainly on solar elevation and, to a minor degree,
on atmospheric pressure, humidity, and temperature (Rada
Giacaman, 2022). Sun elevations in our study range between
15 and 40◦, which yields height difference errors of 0 %–
2 % (see Fig. 10 in Rada Giacaman, 2022). Additional error
sources include uncertainties in the position of the satellite
as well as problems in image registration and deformation.
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Figure 10. Three-dimensional surface views including modelled and mapped shadows cast from Mitre Peak onto Baltoro Glacier, Pakistan.
We used SRTM-1 and replaced Mitre Peak with elevation data from different DEMs. Shadows were calculated with an azimuth of 151.9◦ and
a sun elevation angle of 29.5◦. These values refer to the sun position during the acquisition time (24 January 2000) of the Landsat image from
which shadows were mapped (red outline). Visual comparison shows that the VFP-filled SRTM-1 creates the best match between modelled
and actual cast shadows of the peak, whereas there are pronounced offsets between actual shadows and those derived from other DEMs.
Elevation values indicate the peak altitude of Mitre Peak in each DEM.

Yet, we did not account for errors due to atmospheric refrac-
tion and image registration as they appear minor compared
to those related to image resolution and DEM quality.

Our study reveals and confirms decadal-scale loss of
glacier mass. These changes are consistent with indepen-
dent estimates of glacier elevation changes based on stereo-
photogrammetric analysis of US benchmark glaciers, i.e.
South Cascade, Gulkana, and Sperry glaciers (McNeil et
al., 2022), and historic topographic maps of Great Aletsch
Glacier (Fischer et al., 2015; Leinss and Bernhard, 2021).
For Baltoro Glacier, we detect no credible trends, and in-
dependent, field-based validation data of surface changes at
the shadow location are lacking. Yet, comparison of pho-
tographs from 1909 and 2004 shows that glacier elevation
changes at Concordia were low in the 20th century (< 40 m)
(Mayer et al., 2006). These small rates of surface lowering
have been attributed to increases in precipitation and a low-
ering of summer mean and minimum temperatures in the
Karakoram, supporting regionally unchanged glacier masses
referred to as the “Karakoram anomaly” (Hewitt, 2005; Kääb
et al., 2015; Forsythe et al., 2017; Farinotti et al., 2020).

We stress that our results are tied to local changes in shad-
ows cast from adjacent mountains. Thus, we caution against
comparing our results directly with glacier-wide mass bal-
ances because these are integrated over entire glaciers or
elevation bands within glaciers and may refer to different
study periods. For example, Hugonnet et al. (2021) estimate
that the entire areas of Great Aletsch and South Cascade
glaciers had elevation changes of −1.42± 0.1 and −0.66±
0.15 m yr−1 (mean and 1σ error), respectively, in 2000–
2019. Our estimates are less negative (−1.08+0.05/−0.05 and
−0.57+0.17/−0.17 m yr−1, respectively) in the longer Land-
sat period, either because we measure elevation changes at
higher parts of the glacier, where the pattern of local accu-
mulation, melt, and ice dynamics differs from that of the
whole glacier, or because glacier melt has accelerated in re-
cent years (Hugonnet et al., 2021). Indeed, if we shorten the
study period to the years 2000–2019, Great Aletsch Glacier
shows a trend of elevation change that is almost twice as high
as that for the much longer trend going back to the 1980s. We
thus envision that our method could enhance, complement,
and amend geodetic surveys in ablation and accumulation ar-
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eas (Beedle et al., 2014). Our method can be applied globally
but is restricted to those glaciers that are surrounded by sta-
ble topography. Our method becomes unsuccessful when the
shadow edge constantly falls onto bedrock due to progressive
glacier retreat – a situation that will soon occur at the dwin-
dling Sperry Glacier for example. Ideal environments for our
approach are glaciers close to steep topography in high lat-
itudes, producing cast shadows long enough to infer differ-
ences in bearing lines. Suitable sites remain to be identified
and should, at best, have high-resolution DEMs with high
precision and accuracy available. Locations with large land-
slides that lower mountain peaks (Shugar et al., 2021) should
be avoided as they may violate the assumption of unaltered
ridge topography over time. The processing steps developed
in this study can be fully automated although quality control
of the obtained bearing lines connecting modelled and actual
shadow outlines are crucial.

6 Conclusions and outlook

In summary, we show that cast shadows offer avenues to
retrieve glacier elevation changes from satellite imagery
over many decades. We demonstrate for select cases that
our method provides quantitative information about local
changes in glacier elevation with time. These changes are
consistent with independent DEMs of difference in shaded
areas. Accurately resolving glacier elevation changes hinges
on the spatial resolution of the satellite imagery from which
we mapped shadows, as well as on the quality and resolu-
tion of the underlying DEM. Upon the emergence of global,
void-free, high-resolution satellite images and DEMs, our
method can be extended to historical satellite and aerial im-
agery, assuming that the geometry of mountain ridges and
peaks remains unchanged with time. We conclude that our
approach has the potential to complement existing or future
in situ measuring networks anywhere on Earth where moun-
tains shade parts of adjacent glaciers. We thus enrich the
glaciological and geodetic toolbox with a new method that
helps quantify glacier elevation changes, especially at high
altitudes with limited access.

Code and data availability. The outlines of the shadows, the
bearing lines, tables with inferred elevation changes for
each glacier, and the Bayesian multi-level models are avail-
able via Zenodo (https://doi.org/10.5281/zenodo.8087360,
Pfau et al., 2022). Landsat images were obtained from
EarthExplorer (https://earthexplorer.usgs.gov/, last ac-
cess: 21 January 2023, https://doi.org/10.5066/F71835S6,
Earth Resources Observation and Science (EROS) Cen-
ter, 2018a, https://doi.org/10.5066/F7WH2P8G, Earth Re-
sources Observation and Science (EROS) Center, 2018b,
https://doi.org/10.5066/F7N015TQ, Earth Resources Observa-
tion and Science (EROS) Center, 2018c), and all DEMs from
which we derived shadows are freely available from the sources

provided in Table S2. DEMs for validation are available at
https://doi.org/10.5066/P9R8BP3K (McNeil et al., 2019). Codes
to fit the Bayesian multi-level models are available at GitHub
(https://github.com/geveh/ShadowsOnGlaciers, last access: 21 Au-
gust 2023) and Zenodo (https://doi.org/10.5281/zenodo.8269242,
Veh, 2023).
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