Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3157-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3157-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Geography Research Unit, University of Oulu, Oulu, 90014, Finland
previously published under the name Oona H. Könönen
Olli Karjalainen
Geography Research Unit, University of Oulu, Oulu, 90014, Finland
Juha Aalto
Department of Geosciences and Geography, University of Helsinki,
Helsinki, 00014, Finland
Finnish Meteorological Institute, Helsinki, 00101, Finland
Miska Luoto
Geography Research Unit, University of Oulu, Oulu, 90014, Finland
Jan Hjort
Geography Research Unit, University of Oulu, Oulu, 90014, Finland
Related authors
No articles found.
Emmihenna Jääskeläinen, Miska Luoto, Pauli Putkiranta, Mika Aurela, and Tarmo Virtanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-390, https://doi.org/10.5194/hess-2024-390, 2025
Revised manuscript accepted for HESS
Short summary
Short summary
The challenge with current satellite-based soil moisture products is their coarse resolution. Therefore, we used machine-learning model to improve spatial resolution of well-known SMAP soil moisture data, by using in situ soil moisture observations and additional soil and vegetation properties. Comparisons against independent data set show that the model estimated soil moisture values have better agreement with in situ observations compared to other SMAP-related soil moisture data.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Olli Karjalainen, Juha Aalto, Mikhail Z. Kanevskiy, Miska Luoto, and Jan Hjort
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-144, https://doi.org/10.5194/essd-2022-144, 2022
Manuscript not accepted for further review
Short summary
Short summary
The amount of underground ice in the Arctic permafrost has a central role when assessing climate change-induced changes to natural conditions and human activity in the Arctic. Here, we present compilations of field-verified ground ice observations and high-resolution estimates of Northern Hemisphere ground ice content. The data highlight the variability of ground ice contents across the Arctic and provide called-for information to be used in modelling and environmental assessment studies.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Cited articles
Aalto, J. and Luoto, M.: Integrating climate and local factors for
geomorphological distribution models, Earth Surf. Proc. Land., 39,
1729–1740, https://doi.org/10.1002/esp.3554, 2014.
Aalto, J., Venäläinen, A., Heikkinen, R. K., and Luoto, M.:
Potential for extreme loss in high-latitude Earth surface processes due to
climate change, Geophys. Res. Lett., 41, 3914–3924,
https://doi.org/10.1002/2014GL060095, 2014.
Aalto, J., Harrison, S., and Luoto, M.: Statistical modelling predicts
almost complete loss of major periglacial processes in Northern Europe by
2100, Nat. Commun., 8, 1–8, https://doi.org/10.1038/s41467-017-00669-3,
2017.
Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical
forecasting of current and future circum-Arctic ground temperatures and
active layer thickness, Geophys. Res. Lett., 45, 4889–4898,
https://doi.org/10.1029/2018GL078007, 2018.
Åhman, R.: Palsar i Nordnorge: En studie av palsars morfologi,
utbredning och klimatiska förutsättningar i Finnmarks och Troms
fylke, Royal University of Lund, Department of Geography, 165 pp., 1977.
Allouche, O., Tsoar, A., and Kadmon, R.: Assessing the accuracy of species
distribution models: prevalence, kappa and true skill statistic (TSS), J.
Appl. Ecol., 43, 1223–1232,
https://doi.org/10.1111/j.1365-2664.2006.01214.x, 2006.
Araújo, M. B., Pearson, R. G., Thuiller, W., and Erhard, M.: Validation
of species–climate impact models under climate change, Glob. Change Biol.,
11, 1504–1513, https://doi.org/10.1111/J.1365-2486.2005.01000.X, 2005.
Backe, S.: Kartering av Sveriges palsmyrar, Länsstyrelsen, Luleå, 72
pp., urn:nbn:se:naturvardsverket:diva-2318, 2014.
Barcan, V.: Stability of palsa at the southern margin of its distribution on
the Kola Peninsula, Polar Sci., 4, 489–495,
https://doi.org/10.1016/j.polar.2010.07.002, 2010.
Beilman, D. W.: Plant community and diversity change due to localized
permafrost dynamics in bogs of western Canada, Can. J. Bot., 79, 983–993,
https://doi.org/10.1139/cjb-79-8-983, 2001.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz A. G.,
Abramov, A. Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johansson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J. -P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
B. A. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zhelenznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264,
https://doi.org/10.1038/s41467-018-08240-4, 2019.
Böhner, J. and Selige, T.: Spatial prediction of soil attributes using
terrain analysis and climate regionalization, SAGA – Analyses and Modelling
Applications, Göttinger Geographische Abhandlungen 115, edited by:
McCloy K., and Strobl, J., Goltze, 13–28, ISSN 0341-3780, 2006.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brotons, L., Thuiller, W., Araújo, M. B., Brotons, A. H. H., Jo, A.,
Hirzel, M. B., and Thuiller, W.: Presence-absence versus presence-only
modelling methods for predicting bird habitat suitability, Ecography, 27,
437–448, https://doi.org/10.1111/J.0906-7590.2004.03764.X, 2004.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S. (Eds.):
Circum-Arctic map of permafrost and ground-ice conditions,,
U.S. Geological Survey in Cooperation with the Circum-Pacific Council for
Energy and Mineral Resources Washington, DC, Circum-Pacific Map Series CP-45, scale
1:10 000 000, 1 sheet, 1997.
CAFF: Arctic Flora and Fauna: Status and Conservation, Edita, Helsinki,
Finland, 266 pp., ISBN 9979-9476-5-9, 2001.
Cisty, M., Celar, L., and Minaric, P.: Ensemble modelling in soil
hydrology, Proceedings of the International Multidisciplinary Scientific
GeoConference SGEM, 17–26 June 2014, Albena, Bulgaria, 239–245, 2014.
Danielson, J. J. and Gesch, D. B.: Global Multi-resolution Terrain
Elevation Data 2010 (GMTED2010), U.S. Geological Survey Open-File Report
2011–1073, USGS [data set], https://doi.org/10.5066/F7J38R2N, 2011.
Elith, Jane, Ferrier, S., Huettmann, F., and Leathwick, J.: The evaluation
strip: A new and robust method for plotting predicted responses from species
distribution models, Ecol. Model., 186, 280–289.
https://doi.org/10.1016/J.ECOLMODEL.2004.12.007, 2005.
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC. M., Townsend Peterson, A., Phillips, Richardson, S. J. K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., and Zimmermann, N. E.: Novel methods improve
prediction of species' distributions from occurrence data, Ecography, 29,
129–151, https://doi.org/10.1111/J.2006.0906-7590.04596.X, 2006.
Elith, J., Leathwick, J. R., and Hastie, T.: A working guide to boosted
regression trees, J. Anim. Ecol., 77, 802–813,
https://doi.org/10.1111/j.1365-2656.2008.01390.x, 2008.
Fewster, R. E., Morris, P. J., Swindles, G. T., Gregoire, L. J., Ivanovic,
R. F., Valdes, P. J., and Mullan, D.: Drivers of Holocene palsa distribution
in North America, Quaternary Sci. Rev., 240, 106337,
https://doi.org/10.1016/j.quascirev.2020.106337, 2020.
Fewster, R. E., Morris, P. J., Ivanovic, R. F., Swindles, G. T., Peregon, A.
M., and Smith, C. J.: Imminent loss of climate space for permafrost
peatlands in Europe and Western Siberia, Nat. Clim. Change, 10, 1–7,
https://doi.org/10.1038/s41558-022-01296-7, 2022.
French, H. M.: The
periglacial Environment, 4th edition, Wiley-Blackwell, Hoboken, 515 pp., LCCN
2017027903, 2017.
Fisher, A., Rudin, C., and Dominici, F.: All models are wrong, but many are
useful: Learning a variable's importance by studying an entire class of
prediction models simultaneously, J. Mach. Learn. Res., 20, 177,
https://doi.org/10.48550/arXiv.1801.01489, 2019.
French, H. M.: The Periglacial Environment, 4th edn., Wiley-Blackwell,
Hoboken, ISBN 978-1-119-13278-3, 2017.
Fronzek, S., Luoto, M., and Carter, T.: Potential effect of climate change
on the distribution of palsa mires in subarctic Fennoscandia, Clim. Res.,
32, 1–12, https://doi.org/10.3354/cr032001, 2006.
Fronzek, S., Carter, T. R., and Luoto, M.: Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires, Nat. Hazards Earth Syst. Sci., 11, 2981–2995, https://doi.org/10.5194/nhess-11-2981-2011, 2011.
Ge, Y. and Gong, G.: Land surface insulation response to snow depth
variability, J. Geophys. Res.-Atmos., 115, D8,
https://doi.org/10.1029/2009JD012798, 2010.
Goetz, S. J., MacK, M. C., Gurney, K. R., Randerson, J. T., and Houghton, R.
A.: Ecosystem responses to recent climate change and fire disturbance at
northern high latitudes: observations and model results contrasting northern
Eurasia and North America, Environ, Res. Lett., 2, 045031,
https://doi.org/10.1088/1748-9326/2/4/045031, 2007.
Grosse, G. and Jones, B. M.: Spatial distribution of pingos in northern Asia, The Cryosphere, 5, 13–33, https://doi.org/10.5194/tc-5-13-2011, 2011.
Halsey, L. A., Vitt, D. H., and Zoltai, S. C.: Disequilibrium response of
permafrost in boreal continental western Canada to climate-change, Clim.
Change, 30, 57–73, https://doi.org/10.1007/BF01093225, 1995.
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Stat. Sci., 1,
297–318, 1986.
Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W.,
and Sykes, M. T.: Methods and uncertainties in bioclimatic envelope
modelling under climate change, Proc. Phys. Geogr., 6, 751–777,
https://doi.org/10.1177/0309133306071957, 2006.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high-resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: WorldClim 1.4 (historical conditions), WorldClim [data set], https://www.worldclim.org/data/v1.4/worldclim14.html, last access: 20 May 2022a.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: WorldClim 1.4. Downscaled CMIP5 data, 30 second spatial resolution, WorldClim [data set], https://www.worldclim.org/data/v1.4/cmip5_30s.html, last access: 20 May 2022b.
Hjort, J. and Luoto, M.: Statistical Methods for Geomorphic Distribution
Modeling, Treatise on Geomorphology Vol. 2, edited by: Shroder, J. F. and
Baas A. C. W., Academic Press, 59–73,
https://doi.org/10.1016/B978-0-12-374739-6.00028-2, 2013.
Hjort, J. and Marmion, M.: Effects of sample size on the accuracy of
geomorphological models, Geomorphology, 102, 341–350,
https://doi.org/10.1016/J.GEOMORPH.2008.04.006, 2008.
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.:
Impacts of permafrost degradation on infrastructure, Nat. Rev. Earth
Environ., 3, 24–38, https://doi.org/10.1038/s43017-021-00247-8,
2022.
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, 2nd edn., John
Wiley and Sons, New York, NY, 160–164, 2000.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voight, C., and Yu, Z.: Large stocks of peatland
carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci.
USA, 117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Maps of northern peatland extent, depth, carbon storage and nitrogen storage, Dataset version 2, Bolin Centre Database [data set], https://doi.org/10.17043/hugelius-2020-peatland-2, 2021.
IPCC: Climate Change 2021: The Physical Science Basis, the Working Group I
contribution to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang,
M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge Press, Cambridge,
United Kingdom and New York, USA, https://doi.org/10.1017/9781009157896,
2021.
Janssen, J. A. M., Rodwell, J. S., García Criado, M., Gubbay, S.,
Haynes, T., Nieto, A., Sanders, N., Landucci, F., Loidi, J., Ssymank, A.,
Tahvanainen, T., Valderrabano, M., Acosta, A., Aronsson, M., Arts, G.,
Attorre, F., Bergmeier, E., Bijlsma, R.-J., Bioret, F., Bita-Nicolae, C.,
Biurrun, I., Calix, M., Capelo, J., Carni, A., Dengler, J., Dimopoulus, P.,
Essl, F., Gardfjell, H., Gigante, D., Giusso del Galdo, G., Hájek, M.,
Jansen, J., Kapfer, J., Mickolajczak, A., Molina, J. A., Molnár, Z.,
Paternoster, D., Piernik, A., Poulin, B., Renaux, B., Schaminée, J. H.
J., Sumberová, K., Toivonen, H., Tonteri, T., Tsiripidis, I., Tzonev, R.,
and Valachovic, M.: European Red List of Habitats. Part 2. Terrestrial and
freshwater habitats European Red List of Habitats Environment, Europen
Union, 38 pp., https://doi.org/10.2779/091372, 2016.
Järvinen, O. and Sammalisto, L.: Regional trends in the avifauna of
Finnish peatland bogs, Ann. Zool. Fenn., 13, 31–43, 1976.
Johansson, M., Callaghan, T. V., Bosiö, J., Åkerman, J. H.,
Jackowicz-Korczynski, M., and Christensen, T. R.: Rapid responses of
permafrost and vegetation to experimentally increased snow cover in
sub-arctic Sweden, Environ. Res. Lett., 8, 035025,
https://doi.org/10.1088/1748-9326/8/3/035025, 2013.
Johansson, T., Malmer, N., Crill, P. M., Friborg, T., Åkerman, J. H.,
Mastepanov, M., and Christiansen, T. R.: Decadal vegetation changes in a
northern peatland, greenhouse gas fluxes and net radiative forcing, Global
Change Biol., 12, 2352–2369,
https://doi.org/10.1111/j.1365-2486.2006.01267.x, 2006.
Karjalainen, O., Luoto, M., Aalto, J., and Hjort, J.: New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas, The Cryosphere, 13, 693–707, https://doi.org/10.5194/tc-13-693-2019, 2019.
Karjalainen, O., Luoto, M., Aalto, J., Etzelmüller, B., Grosse, G.,
Jones, B. M., Lilleøren, K., S., and Hjort, J.: High potential for loss of
permafrost landforms in a changing climate, Environ. Res. Lett., 15, 104065,
https://doi.org/10.1088/1748-9326/abafd5, 2020.
Kershaw, G. P. and Gill, D.: Growth and decay of palsas and peat plateaus
in the Macmillan Pass – Tsichu River area, Northwest Territories, Canada,
Can. J. Earth Sci., 16, 1362–1374, https://doi.org/10.1139/e79-122, 1979.
Kirpotin, S., Polishchuk, Y., Bryksina, N., Sugaipova, A., Kouraev, A.,
Zakharova, E., Pokrovsky, O. S., Shirokova, L., Kolmakova, M., Manassypov,
R., and Dupre, B.: West Siberian palsa peatlands: distribution, typology,
cyclic development, present day climate-driven changes, seasonal hydrology,
and impact on CO2 cycle, Int. J. Environ. Stud., 68, 603–623,
https://doi.org/10.1080/00207233.2011.593901, 2011.
Könönen, O. H., Karjalainen, O., Aalto, J., Luoto, M., and Hjort, J.: Spatial predictions of suitable environments for palsas and peat plateaus in the Northern Hemisphere for recent and future periods, Zenodo [data set], https://doi.org/10.5281/zenodo.7745085, 2023.
Kujala, K., Seppälä, M., and Holappa, T.: Physical properties of
peat and palsa formation, Cold Reg. Sci. Technol., 52, 408–414,
https://doi.org/10.1016/j.coldregions.2007.08.002, 2008.
Lagarec, D.: Cryogenetic mounds as indicators of permafrost conditions,
northern Québec, in: Proceedings in Fourth Canadian Permafrost
Conference, 2-6 March 1981, Calgary, Alberta, 43–48, 1982.
Landis, J. R. and Koch G. G.: The measurement of observer agreement for
categorial data, Biometrics, 33, 159–174, https://doi.org/10.2307/2529310,
1977.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. v.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Luoto, M. and Seppälä, M.: Thermokarst ponds as indicators of the
former distribution of palsas in Finnish Lapland, Permafrost Periglac., 14,
19–27, https://doi.org/10.1002/PPP.441, 2003.
Luoto, M., Heikkinen, R., and Carter, T. R.: Loss of palsa mires in Europe
and biological consequences, Environ. Conserv., 31, 30–37,
https://doi.org/10.1017/S0376892904001018, 2004a.
Luoto, M., Fronzek, S., and Zuidhoff, F. S.: Spatial modelling of palsa
mires in relation to climate in Northern Europe, Earth Surf. Proc. Land.,
29, 1373–1387, https://doi.org/10.1002/esp.1099, 2004b.
Luoto, M., Marmion, M., and Hjort, J.: Assessing spatial uncertainty in
predictive geomorphological mapping: A multi-modelling approach, Comput.
Geosci., 36, 355–361, https://doi.org/10.1016/J.CAGEO.2009.07.008, 2010.
Magnan, G., Sanderson, N. K., Piilo, S., Pratte, S., Väliranta, M., van
Bellen, S., Zhang, H., and Garneau, M.: Widespread recent ecosystem state
shifts in high-latitude peatlands of northeastern Canada and implications
for carbon sequestration, Glob. Change Biol., 28, 1919–1934,
https://doi.org/10.1111/GCB.16032, 2022.
Malmer, N., Johansson, T., Olsrud, M., and Christensen, T. R.: Vegetation,
climatic changes, and net carbon sequestration in a North-Scandinavian
subarctic mire over 30 years, Glob. Change Biol., 11, 1895–1909,
https://doi.org/10.1111/j.1365-2486.2005.01042.x, 2005.
Mamet, S. D., Chun, K. P., Kershaw, G. G. L., Loranty, M. M., and
Kershaw, P. G.: Recent Increases in Permafrost Thaw Rates and Areal Loss of
Palsas in the Western Northwest Territories, Canada, Permafrost Periglac.,
28, 619–633, https://doi.org/10.1002/ppp.1951, 2017.
Mandrekar, J. N.: Receiver Operating Characteristic Curve in diagnostic test
assessment, J. Thorac. Oncol. 5 1315–1316,
https://doi.org/10.1097/JTO.0b013e3181ec173d, 2010.
Markkula, I.: Permafrost dynamics structure species compositions of oribatid
mite (Acari: Oribatida) communities in sub-Arctic palsa mires, Polar Res.,
33, 22926, https://doi.org/10.3402/polar.v33.22926, 2014.
Marushchak, M., Pitkämäki, A., Koponen, H., Biasi, C.,
Seppälä, M., and Martikainen P. J.: Hot spots for nitrous oxide
emissions found in different types of permafrost peatlands, Global Change
Biol., 17, 2601–12614, https://doi.org/10.1111/j.1365-2486.2011.02442.x,
2011.
Matthews, J. A., Dahl, S.-O. O., Berrisford, M. S., and Nesje, A.: Cyclic
development and thermokarstic degradation of palsas in the mid-alpine zone
at Leirpullan, Dovrefjell, Southern Norway, Permafrost Periglac., 8,
107–122, https://doi.org/10.1002/(sici)1099-1530(199701)8:1<107::aid-ppp237>3.0.co;2-z, 1997.
Mekonnen, Z. A., Riley, W. J., Grant, R. F., and Romanovsky, V. E.: Changes
in precipitation and air temperature contribute comparably to permafrost
degradation in a warmer climate, Environ. Res. Lett., 16, 024008,
https://doi.org/10.1088/1748-9326/ABC444, 2021.
Metsähallitus: Valtion suojelualueiden biotooppikuviot (Finnish dataset
of biotopes), Metsähallitus, luontopalvelut,
e3aa7b2a-e6e2-45dc-a29a-b64bcf2aba9f, 2019.
Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J.,
McGuire, A. D., Fix, A., Sweeney, C., Elder, C. D., and Miller, C. E.:
Permafrost carbon emissions in a changing Arctic, Nat. Rev. Earth
Environ., 3, 55–67, https://doi.org/10.1038/S43017-021-00230-3, 2022.
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A.,
Harden, J. W., Jastrow, J. D., Ping, C. L., Riley, W. J., Schuur, E. A. G.,
Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag,
J., Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman, F. M., Elberling, B.,
Camill, P., Veremeeva, A., and Orr, A.: Spatial heterogeneity and
environmental predictors of permafrost region soil organic carbon stocks,
Sci. Adv., 7, 5236–5260, https://doi.org/10.1126/sciadv.aaz5236,
2021.
Muller, S. W.: Permafrost or Permanently Frozen Ground and Related
Engineering Problems, Special report, Strategic Engineering Study, 62, 136
pp., 1943.
Nelder, J. A. and Wedderburn, R. W. M.: Generalized Linear Models, J. R.
Stat. Soc. Ser. A–G., 135, 370–384, https://doi.org/10.2307/2344614, 1972.
Normand, A. E., Smith, A. N., Clark, M. W., Long, J. R., and Reddy, K. R.: Chemical Composition of Soil Organic Matter in a Subarctic Peatland:
Influence of Shifting Vegetation Communities Soil Chemistry, Soil Sci. Soc.
Am. J., 81, 41–49, https://doi.org/10.2136/sssaj2016.05.0148, 2017.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
Mcguire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 1–11, https://doi.org/10.1038/ncomms13043,
2016a.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D. J., Hugelius, G., Kuhry, P., Sannel, B., Schuur, E. A. G., and Turetsky, M. R.: Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes, 2015, ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/1332, 2016b.
Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J., Connolly, J., Crill, P., Euskirchen, E. S., Finkelstein, S. A., Genet, H., Grosse, G., Harris, L. I., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M. J., Malhotra, A., Manies, K., McGuire, A. D., Natali, S. M., O'Donnell, J. A., Parmentier, F.-J. W., Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S. E., Treat, C., Varner, R. K., Virtanen, T., Warren, R. K., and Watts, J. D.: The Boreal–Arctic Wetland and Lake Dataset (BAWLD), Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, 2021a.
Olefeldt, D., Hovemyr, M., Kuhn, M., Bastviken, D., Bohn, T., Connolly, J., Crill, P., Euskirchen, E., Finkelstein, S., Genet, H., Grosse, G., Harris, L., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M., Malhotra, A., Manies, K., McGuire, D., Natali, S., O'Donnell, J., Parmentier, F.-J., Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S., Treat, C., Varner, R., Virtanen, T., Warren, R., and Watts, J.: The fractional land cover estimates from the Boreal-Arctic Wetland and Lake Dataset (BAWLD), 2021, Arctic Data Center [data set], https://doi.org/10.18739/A2C824F9X, 2021b.
Olvmo, M., Holmer, B., Thorsson, S., Reese, H., and Lindberg, F.: Sub-arctic
palsa degradation and the role of climatic drivers in the largest coherent
palsa mire complex in Sweden (Vissátvuopmi), 1955–2016, Sci. Rep.-UK,
10, 8937, https://doi.org/10.1038/s41598-020-65719-1, 2020.
Ottósson, J. G., Sveinsdóttir, A., and Harðardóttir, M.:
Vistgerðirá Íslandi, Fjölrit
Náttúrufræðistofnunar 54, Garðabær:
NáttúrufræðistofnunÍslands (Habitat types in Iceland,
Icelandic Institute of Natural History), ISBN 978-9979-9335-8-8, 2016.
Parviainen, M., and Luoto, M.: Climate envelopes of mire complex types in
Fennoscandia, Geogr. Ann. A., 89, 137–151,
https://doi.org/10.1111/J.1468-0459.2007.00314.X, 2007.
Payette, S., Delwaide, A., Caccianiga, M., and Beauchemin, M.: Accelerated
thawing of subarctic peatland permafrost over the last 50 years, Geophys.
Res. Lett., 31, L18208, https://doi.org/10.1029/2004GL020358, 2004.
Peng, X., Zhang, T., Frauenfeld, O. W., Wang, K., Luo, D., Cao, B., Su, H.,
Jin, H., and Wu, Q.: Spatiotemporal Changes in Active Layer Thickness under
Contemporary and Projected Climate in the Northern Hemisphere, J. Climate,
31, 251–266, https://doi.org/10.1175/JCLI-D-16-0721.1, 2018.
Pissart, A.: Palsas, lithalsas and remnants of these periglacial mounds. A
progress report, Prog. Phys. Geog., 26, 605–621,
https://doi.org/10.1191/0309133302pp354ra, 2002.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 13 January 2023), 2022.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022.
Rissanen, T., Niittynen, P., Soininen, J., and Luoto, M.: Snow information
is required in subcontinental scale predictions of mountain plant
distributions, Global Ecol. Biogeogr., 30, 1502–1513,
https://doi.org/10.1111/GEB.13315, 2021.
Rudy, A. C. A., Lamoureux, S. F., Treitz, P., and van Ewijk, K. Y.:
Transferability of regional permafrost disturbance susceptibility modelling
using generalized linear and generalized additive models, Geomorphology,
264, 95–108, https://doi.org/10.1016/J.GEOMORPH.2016.04.011, 2016.
Ruuhijärvi, R., Salminen, P., and Tuominen, S.: Distribution range,
morphological types, and state of palsa mires in Finland in the 2010s, Suo,
73, 1–32, ISSN 0039-5471, 2022.
Saemundsson, T., Arnalds, O., Kneisel, C., Jonsson, H. P., and Decaulne, A.:
The Orravatnsrustir palsa site in Central Iceland-Palsas in an aeolian
sedimentation environment, Geomorphology, 167–168, 13–20,
https://doi.org/10.1016/j.geomorph.2012.03.014, 2012.
Sannel, A. B. K.: Ground temperature and snow depth variability
within a subarctic peat plateau landscape, Permafrost Periglac., 31,
255–263, https://doi.org/10.1002/ppp.2045, 2020.
Sannel, A. B. K., Hugelius, G., Jansson, P., and Kuhry, P.: Permafrost
Warming in a Subarctic Peatland – Which Meteorological Controls are Most
Important?, Permafrost Periglac., 27, 177–188,
https://doi.org/10.1002/PPP.1862, 2016.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Schwarz, G.: Estimating the Dimension of a Model, Ann. Stat., 6,
461–464, https://doi.org/10.1214/aos/1176344136, 1978.
Seppälä, M.: An experimental study of the formation of palsas, in:
Proceedings of the Fourth Canadian Permafrost Conference, Calgary, Canada,
2–6 March 1981, 36–42, 1982.
Seppälä, M.: Palsas and Related Forms, in: Advances in periglacial
geomorphology, edited by: Clark, M. J., John Wiley & Sons, Ltd,
Chichester, 247–278, IBSN 0 471 90981 5, 1988.
Seppälä, M.: Depth of Snow and Frost on a Palsa Mire, Finnish
Lapland, Geogr. Ann. A., 72, 191–201, https://doi.org/10.2307/521114, 1990.
Seppälä, M.: Snow depth controls palsa growth, Permafrost Periglac.,
5, 283–288, https://doi.org/10.1002/PPP.3430050407, 1994.
Seppälä, M.: Surface abrasion of palsas by wind action in Finnish
Lapland, Geomorphology, 52, 141–148,
https://doi.org/10.1016/S0169-555X(02)00254-4, 2003.
Seppälä, M.: Palsa mires in Finland, The Finnish Environment, 23,
155–162, 2006.
Seppälä, M.: Synthesis of studies of palsa formation underlining the
importance of local environmental and physical characteristics, Quaternary
Res., 75, 366–370, https://doi.org/10.1016/j.yqres.2010.09.007, 2011.
Seppälä, M. and Hassinen, S.: Freeze-thaw indices in northernmost
Fennoscandia according to meteorological observations, 1980–1991, in: Ground Freezing 97: Frost action in soils, edited by:
Knutsson, S., A.
A. Balkema, Rotterdam, 153–160, ISBN 9789054108726, 1997.
Siewert, M. B.: High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment, Biogeosciences, 15, 1663–1682, https://doi.org/10.5194/bg-15-1663-2018, 2018.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Cooper, C. L.,
Gallego-Sala, A. v., Charman, D. J., Roland, T. P., Borken, W., Mullan, D.
J., Aquino-López, M. A., and Gałka, M.: Divergent responses of
permafrost peatlands to recent climate change, Environ. Res. Lett., 16,
034001, https://doi.org/10.1088/1748-9326/ABE00B, 2021.
Sollid, J. L. and Sørbel, L.: Palsa bogs as a climate indicator –
Examples from Dovrefjell, southern Norway, Ambio, 27, 287–291,
1998.
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E.,
Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S.,
Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick, J.
L., Woulds, C., Holden, J., Parry, L., and Galloway, J. M.: The long-term
fate of permafrost peatlands under rapid climate warming, Sci. Rep.-UK, 5,
17951, https://doi.org/10.1038/srep17951, 2016.
Tam, A., Gough, W. A., Kowal, S., and Xie, C.: The Fate of Hudson Bay
Lowlands Palsas in a Changing Climate, Arct., Antarct. Alp. Res., 46,
114–120, https://doi.org/10.1657/1938-4246-46.1.114, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Terentieva, I. E., Glagolev, M. V., Lapshina, E. D., Sabrekov, A. F., and Maksyutov, S.: Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions, Biogeosciences, 13, 4615–4626, https://doi.org/10.5194/bg-13-4615-2016, 2016.
Thuiller, W., Lafourcade, B., and Araujo, M.: Presentation Manual for
BIOMOD, University of Joseph Fourier, Grenoble, 35 pp., 2010.
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – a
platform for ensemble forecasting of species distributions, Ecography, 32,
369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009.
Thuiller, W., Georges, D., Gueguen,M., Engler, R., and Breiner, F.: Biomod2:
Ensemble Platform for Species Distribution Modelling, CRAN,
https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (last access: 13 January 2023), 2021.
Treat, C. C., Jones, M. C., Camill, A., Gallego-Sala, A., Garneau, M.,
Harden, J. W., Hugelius, G., Klein, E. S., Kokfelt, U., Kuhry, P., Loisel,
J., Mathijissen, P. J. H., O'Donnell, J. A., Oksanen, P. O., Ronkainen, T.
M., Sannel, A. B. K., Talbot, J., Tarnocai, C., and Väliranta, M.:
Effects of permafrost aggradation on peat properties as determined from a
pan-Arctic synthesis of plant macrofossils, J. Geophys. Res.-Biogeo., 121,
78–94, https://doi.org/10.1002/2015JG003061, 2016a.
Treat, C. C., Jones, M. C., Camill, A., Gallego-Sala, A., Garneau, M.,
Harden, J. W., Hugelius, G., Klein, E. S., Kokfelt, U., Kuhry, P., Loisel,
J., Mathijissen, P. J. H., O'Donnell, J. A., Oksanen, P. O., Ronkainen, T.
M., Sannel, A. B. K., Talbot, J., Tarnocai, C., and Väliranta, M.:
Synthesis dataset of physical ad ecosystem properties from pan-arctic
wetland sitesusing peat core analysis, PANGEA [data set],
https://doi.org/10.1594/PANGAEA.863697, 2016b.
Treat, C. C., Jones, M. C., Camill, P., Gallego-Sala, A. V., Garneau, M., Harden, J. W., Hugelius, G., Klein, E. S., Kokfelt, U., Kuhry, P., Loisel, J., Mathijssen, P. J. H., O'Donnell, J. A., Oksanen, P. O., Ronkainen, T. M., Sannel, A., Britta, K., Talbot, J., Tarnocai, C., and Väliranta, M.: (Table S1) Site locations of cores and descriptions, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.863689, 2016c.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W.,
Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven,
C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.:
Carbon release through abrupt permafrost thaw, Nature Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020.
Vasil'chuk, Y. K., Vasil'chuk, A. C., Budantseva, N. A., Yoshikawa, K.,
Chizhova, J. N., and Stanilovskaya, J. V.: Palsas in the southern part of
the Middle Siberia permafrost zone, Eng. Geol. 3, 13–34, 2013a.
Vasil'chuk, Y. K., Vasil'chuk, A. C., and Repkina, T. Y.: Palsas in the
polar part of the Middle Siberia permafrost zone, Eng. Geol. 2, 28–45,
2013b.
Vasil'chuk, Y. K., Budantseva, N. A., Vasil'chuk, A. C., and Chizhova, J.
N.: Palsas in the Eastern Siberia and Far East permafrost zone, Eng. Geol.,
1, 40–64, 2014.
Vorren, K.-D.: The first permafrost cycle in Faerdesmyra, Norsk. Geogr.
Tidsskr, 71, 114–121, https://doi.org/10.1080/00291951.2017.1316309, 2017.
Wang, X., Ran, Y., Pang, G., Chen, D., Su, B., Chen, R., Li, X., Chen, H.
W., Yang, M., Gou, X., Jorgenson, M. T., Aalto, J., Li, R., Peng, X., Wu,
T., Clow, G. D., Wan, G., Wu, X., and Luo, D.: Contrasting characteristics,
changes, and linkages of permafrost between the Arctic and the Third Pole,
Earth-Sci. Rev., 230, 104042,
https://doi.org/10.1016/J.EARSCIREV.2022.104042, 2022.
Wang, Y., Way, R. G., Beer, J., Forget, A., Tutton, R., and Purcell, M. C.: Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada, The Cryosphere, 17, 63–78, https://doi.org/10.5194/tc-17-63-2023, 2023.
Washburn, A. L.: What is a palsa?, in: Matematisch-Physikalische Klasse,
Dritte folge, Mesoformen des reliefs im heutigen Periglazialraum, Berich
über ein Symposium, 35, edited by: Poser, H. and Schunke, E.,
Vandenhoeck & Ruprecht, Göttingen, 34–47, 1983.
Xu, J., Morris, P. J., Liu, J., and Holden, J.: PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis, University of Leeds [data set], https://doi.org/10.5518/252, 2017.
Xu, J., Morris, P. J., Liu, J., and Holden, J.: PEATMAP: Refining estimates
of global peatland distribution based on meta-analysis, CATENA,
160, 134–140, https://doi.org/10.1016/j.catena.2017.09.010, 2018.
You, Q., Cai, Z., Pepin, N., Chen, D., Ahrens, B., Jiang, Z., Wu, F., Kang,
S., Zhang, R., Wu, T., Wang, P., Li, M., Zuo, Z., Gao, Y., Zhai, P., and
Zhang, Y.: Warming amplification over the Arctic Pole and Third Pole:
Trends, mechanisms, and consequences, Earth-Sci. Rev., 217, 103625,
https://doi.org/10.1016/j.earscirev.2021.103625, 2021.
Zhao, D.-M., Jiao, Y.-M., Wang, J.-L., Liu, Z.-L., Qiu, Y.-M., and Zhang,
J.: Comparative performance assessment of landslide susceptibility models
with presence-only, presence-absence, and pseudo-absence data, J. Mi Sci.,
17, 2961–2981, https://doi.org/10.1007/s11629-020-6277-y, 2020.
Zoltai, S. C.: Palsas and Peat Plateaus in Central Manitoba and
Saskatchewan, Can. J. Forest Res., 2, 291–301,
https://doi.org/10.1139/x72-046, 1972.
Zoltai, S. C. and Tarnocai, C.: Properties of A Wooded Palsa in Northern
Manitoba, Arct. Alp. Res., 3, 115–129,
1971.
Zoltai, S. C. and Tarnocai, C.: Perennially Frozen Peatlands in the
Western Arctic and Subarctic of Canada, Can. J. Earth Sci., 12, 28–43,
https://doi.org/10.1139/e75-004, 1975.
Zoltai, S. C., Siltanen, R. M., and Johnson, J. D.: A wetland data base for
the western boreal, subarctic, and arctic regions of Canada, Northern
Forestry Centre, Canadian Forest Service, Edmonton, 30 pp., ISBN 0662285395,
2000.
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
For the first time, suitable environments for palsas and peat plateaus were modeled for the...