Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2701-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2701-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Is vertical shear in an ice shelf (still) negligible?
Chris Miele
CORRESPONDING AUTHOR
Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID, USA
Timothy C. Bartholomaus
Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID, USA
Ellyn M. Enderlin
Department of Geosciences, Boise State University, Boise, ID, USA
Related authors
No articles found.
Aman KC, Ellyn M. Enderlin, Dominik Fahrner, Twila Moon, and Dustin Carroll
The Cryosphere, 19, 3089–3106, https://doi.org/10.5194/tc-19-3089-2025, https://doi.org/10.5194/tc-19-3089-2025, 2025
Short summary
Short summary
The sum of ice flowing towards a glacier’s terminus and changes in the position of the terminus over time collectively makes up terminus ablation. We found that terminus ablation has more seasonal variability than previously concluded from flux-based estimates of ice discharge. The findings are of importance in understanding the timing and location of the freshwater input to the fjords and surrounding ocean basins affecting local and regional ecosystems and ocean properties.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
The Cryosphere, 19, 1675–1693, https://doi.org/10.5194/tc-19-1675-2025, https://doi.org/10.5194/tc-19-1675-2025, 2025
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. Yet previous work has not directly compared machine learning algorithms for snow classification across satellite image products. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using several image products and machine learning models. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover.
Zachary Fair, Carrie Vuyovich, Thomas Neumann, Justin Pflug, David Shean, Ellyn M. Enderlin, Karina Zikan, Hannah Besso, Jessica Lundquist, Cesar Deschamps-Berger, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3992, https://doi.org/10.5194/egusphere-2024-3992, 2025
Short summary
Short summary
Lidar is commonly used to measure snow over global water reservoirs. However, ground-based and airborne lidar surveys are expensive, so satellite-based methods are needed. In this review, we outline the latest research using satellite-based lidar to monitor snow. Best practices for lidar-based snow monitoring are given, as is a discussion on challenges in this field of research.
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024, https://doi.org/10.5194/tc-18-4817-2024, 2024
Short summary
Short summary
The melting of ice mélange, or dense packs of icebergs and sea ice in glacial fjords, can influence the water column by releasing cold fresh water deep under the ocean surface. However, direct observations of this process have remained elusive. We use measurements of ocean temperature, salinity, and velocity bookending an episodic ice mélange event to show that this meltwater input changes the density profile of a glacial fjord and has implications for understanding tidewater glacier change.
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024, https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Short summary
There are sometimes gaps in global glacier velocity records produced using satellite image feature-tracking algorithms during times of rapid glacier acceleration, which hinders the study of glacier flow processes. We present an open-source pipeline for customizing the feature-tracking parameters and for including images from an additional source. We applied it to five glaciers and found that it produced accurate velocity data that supplemented their velocity records during rapid acceleration.
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411, https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Short summary
Marine-terminating glaciers can lose mass through frontal ablation, which comprises submarine and surface melting, and iceberg calving. We estimate frontal ablation for 49 marine-terminating glaciers in Greenland by combining existing, satellite derived data and calculating volume change near the glacier front over time. The dataset offers exciting opportunities to study the influence of climate forcings on marine-terminating glaciers in Greenland over multi-decadal timescales.
Evan Carnahan, Ginny Catania, and Timothy C. Bartholomaus
The Cryosphere, 16, 4305–4317, https://doi.org/10.5194/tc-16-4305-2022, https://doi.org/10.5194/tc-16-4305-2022, 2022
Short summary
Short summary
The Greenland Ice Sheet primarily loses mass through increased ice discharge. We find changes in discharge from outlet glaciers are initiated by ocean warming, which causes a change in the balance of forces resisting gravity and leads to acceleration. Vulnerable conditions for sustained retreat and acceleration are predetermined by the glacier-fjord geometry and exist around Greenland, suggesting increases in ice discharge may be sustained into the future despite a pause in ocean warming.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020, https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary
Short summary
Accurate predictions of future changes in glacier flow require the realistic simulation of glacier terminus position change in numerical models. We use crevasse observations for 19 Greenland glaciers to explore whether the two commonly used crevasse depth models match observations. The models cannot reproduce spatial patterns, and we largely attribute discrepancies between modeled and observed depths to the models' inability to account for advection.
Cited articles
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., and Larour, E. Y.: Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland, The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, 2016. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a
thermomechanically coupled ice sheet model, J. Geophys. Res.-Sol. Ea., 114, 1–21, https://doi.org/10.1029/2008JF001179, 2009. a
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers,
Butterworth-Heinemann, Burlington, MA, 4th edn.,
https://doi.org/10.3189/002214311796405906, 2010. a, b
Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers, Springer,
Berlin, https://doi.org/10.3189/002214311798043717, 2009. a, b
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale,
high order, high spatial resolution, ice sheet modeling using the Ice Sheet
System Model (ISSM), J. Geophys. Res.-Earth, 117, F01022,
https://doi.org/10.1029/2011JF002140, 2012. a
Millstein, J. D., Minchew, B. M., and Pegler, S. S.: Ice viscosity is more
sensitive to stress than commonly assumed, Communications Earth &
Environment, 3, 1–7, https://doi.org/10.1038/s43247-022-00385-x, 2022. a
Morland, L. W.: Unconfined ice-shelf flow, in: Dynamics of the West Antarctic
Ice Sheet, 28, 5241–5244, https://doi.org/10.1007/978-94-009-3745-1_6, 1987. a
Oerlemans, J.: Analytical Models of Ice Sheets and Ice Shelves, in: Glaciers
and Ice Sheets in the Climate System, edited by: Fowler, A. and Ng, F., Springer International Publishing, 241–254,
https://doi.org/10.1007/978-3-030-42584-5_10, 2021. a
Pattyn, F. and Decleir, H.: Numerical simulation of Shirase Glacier, East
Queen Maud Land, Antarctica, NIPR Symp. Polar Meteorol. Glaciol., 9, 87–109, https://doi.org/10.15094/00003882, 1995. a
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh,
R. C., Zwinger, T., Albrecht, T., Cornford, S., Docquier, D., Fürst,
J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten, M.,
Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D., Morlighem,
M., Payne, A. J., Pollard, D., Rückamp, M., Rybak, O., Seroussi, H.,
Thoma, M., and Wilkens, N.: Grounding-line migration in plan-view marine
ice-sheet models: Results of the ice2sea MISMIP3d intercomparison, J. Glaciol., 59, 410–422, https://doi.org/10.3189/2013JoG12J129, 2013.
a
Robin, G. D. Q.: Ice shelves and ice flow, Nature, 253, 168–172,
https://doi.org/10.1038/253168a0, 1975. a
Rückamp, M., Neckel, N., Berger, S., Humbert, A., and Helm, V.: Calving
Induced Speedup of Petermann Glacier, J. Geophys. Res.-Earth, 124, 216–228, https://doi.org/10.1029/2018JF004775, 2019. a
Sanderson, T. J.: Equilibrium profile of ice shelves, J. Glaciol.,
22, 435–460, https://doi.org/10.3189/S0022143000014453, 1979. a, b
Schoof, C. and Hindmarsh, R. C.: Thin-film flows with wall slip: An asymptotic
analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 73–114, https://doi.org/10.1093/qjmam/hbp025, 2010. a, b, c
Thomas, R. H.: The creep of ice shelves: theory, J. Glaciol., 12, 45–53, https://doi.org/10.3189/S0022143000022693,
1973. a, b
Weertman, J.: Deformation of floating ice shelves, J. Glaciol., 3, 38–42, https://doi.org/10.3189/S0022143000024710,
1957. a, b
Weis, M., Greve, R., and Hutter, K.: Theory of shallow ice shelves, Continuum
Mech. Therm., 11, 15–50, 1999. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(1336 KB) - Full-text XML
Short summary
Vertical shear stress (the stress orientation usually associated with vertical gradients in horizontal velocities) is a key component of the stress balance of ice shelves. However, partly due to historical assumptions, vertical shear is often misspoken of today as
negligiblein ice shelf models. We address this miscommunication, providing conceptual guidance regarding this often misrepresented stress. Fundamentally, vertical shear is required to balance thickness gradients in ice shelves.
Vertical shear stress (the stress orientation usually associated with vertical gradients in...