Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2701-2023
https://doi.org/10.5194/tc-17-2701-2023
Brief communication
 | 
12 Jul 2023
Brief communication |  | 12 Jul 2023

Brief communication: Is vertical shear in an ice shelf (still) negligible?

Chris Miele, Timothy C. Bartholomaus, and Ellyn M. Enderlin

Related authors

Improved records of glacier flow instabilities using customized NASA autoRIFT applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
EGUsphere, https://doi.org/10.5194/egusphere-2024-374,https://doi.org/10.5194/egusphere-2024-374, 2024
Short summary
A Frontal Ablation Dataset for 49 Tidewater Glaciers in Greenland
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411,https://doi.org/10.5194/essd-2023-411, 2023
Revised manuscript under review for ESSD
Short summary
Observed mechanism for sustained glacier retreat and acceleration in response to ocean warming around Greenland
Evan Carnahan, Ginny Catania, and Timothy C. Bartholomaus
The Cryosphere, 16, 4305–4317, https://doi.org/10.5194/tc-16-4305-2022,https://doi.org/10.5194/tc-16-4305-2022, 2022
Short summary
Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021,https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Sharp contrasts in observed and modeled crevasse patterns at Greenland's marine terminating glaciers
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020,https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Unveiling spatial variability within the Dotson Melt Channel through high-resolution basal melt rates from the Reference Elevation Model of Antarctica
Ann-Sofie Priergaard Zinck, Bert Wouters, Erwin Lambert, and Stef Lhermitte
The Cryosphere, 17, 3785–3801, https://doi.org/10.5194/tc-17-3785-2023,https://doi.org/10.5194/tc-17-3785-2023, 2023
Short summary
Extreme melting at Greenland’s largest floating ice tongue
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
EGUsphere, https://doi.org/10.5194/egusphere-2023-1320,https://doi.org/10.5194/egusphere-2023-1320, 2023
Short summary
Change in Antarctic ice shelf area from 2009 to 2019
Julia R. Andreasen, Anna E. Hogg, and Heather L. Selley
The Cryosphere, 17, 2059–2072, https://doi.org/10.5194/tc-17-2059-2023,https://doi.org/10.5194/tc-17-2059-2023, 2023
Short summary
Predicting ocean-induced ice-shelf melt rates using deep learning
Sebastian H. R. Rosier, Christopher Y. S. Bull, Wai L. Woo, and G. Hilmar Gudmundsson
The Cryosphere, 17, 499–518, https://doi.org/10.5194/tc-17-499-2023,https://doi.org/10.5194/tc-17-499-2023, 2023
Short summary
Glaciological history and structural evolution of the Shackleton Ice Shelf system, East Antarctica, over the past 60 years
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023,https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary

Cited articles

Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., and Larour, E. Y.: Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland, The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, 2016. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model, J. Geophys. Res.-Sol. Ea., 114, 1–21, https://doi.org/10.1029/2008JF001179, 2009. a
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Butterworth-Heinemann, Burlington, MA, 4th edn., https://doi.org/10.3189/002214311796405906, 2010. a, b
Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers, Springer, Berlin, https://doi.org/10.3189/002214311798043717, 2009. a, b
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Download
Short summary
Vertical shear stress (the stress orientation usually associated with vertical gradients in horizontal velocities) is a key component of the stress balance of ice shelves. However, partly due to historical assumptions, vertical shear is often misspoken of today as negligible in ice shelf models. We address this miscommunication, providing conceptual guidance regarding this often misrepresented stress. Fundamentally, vertical shear is required to balance thickness gradients in ice shelves.