Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2305-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong SAR, China
Centre for Geography and Environmental Science, University of Exeter,
Penryn, Cornwall, TR10 9FE, UK
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, The Chinese University of Hong Kong, Hong Kong SAR,
China
Stephan Harrison
Centre for Geography and Environmental Science, University of Exeter,
Penryn, Cornwall, TR10 9FE, UK
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong SAR, China
Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, The Chinese University of Hong Kong, Hong Kong SAR,
China
Joanne Laura Wood
Centre for Geography and Environmental Science, University of Exeter,
Penryn, Cornwall, TR10 9FE, UK
Related authors
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Cited articles
Arenson, L. U. and Jakob, M.: The significance of rock glaciers in the dry
Andes – A discussion of Azócar and Brenning (2010) and Brenning and
Azócar (2010), Permafrost Periglac., 21, 282–285,
https://doi.org/10.1002/ppp.693, 2010.
Arenson, L. and Springman, S.: Mathematical descriptions for the behaviour
of ice-rich frozen soils at temperatures close to 0 C, Can. Geotech. J., 42,
431–442, https://doi.org/10.1139/t04-109, 2005a.
Arenson, L. and Springman, S.: Triaxial constant stress and constant strain
rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430,
https://doi.org/10.1139/t04-111, 2005b.
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation
measurements and internal structure of some rock glaciers in Switzerland,
Permafrost Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414, 2002.
Azizi, F. and Whalley, W. B.: Numerical modelling of the creep behaviour of
ice-debris mixtures under variable thermal regimes, in: International
Offshore and Polar Engineering Conference Proceedings, The Sixth
International Offshore and Polar Engineering Conference, Los Angeles, 362–366,
ISBN 1880653222, 1996.
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological
significance of rock glaciers in the dry Andes, Chile (27∘–33∘ S), Permafrost Periglac., 21, 42-53,
https://doi.org/10.1002/ppp.669, 2010.
Ballantyne, C. K.: Periglacial geomorphology, John Wiley & Sons, Hoboken,
NJ, USA, ISBN 9781405100069, 2018.
Bechor, N. B. D. and Zebker, H. A.: Measuring two-dimensional movements
using a single InSAR pair, Geophys. Res. Lett., 33, L16311,
https://doi.org/10.1029/2006gl026883, 2006.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned
landforms, Geomorphology, 131, 98–106,
https://doi.org/10.1016/j.geomorph.2011.05.002, 2011.
Berthling, I., Etzelmüller, B., Isaksen, K., and Sollid, J. L.: Rock
glaciers on Prins Karls Forland. II: GPR soundings and the development of
internal structures, Permafrost Periglac., 11, 357–369,
https://doi.org/10.1002/1099-1530(200012)11:4<357::aid-ppp366>3.0.co;2-6, 2000.
Bertone, A., Barboux, C., Bodin, X., Bolch, T., Brardinoni, F., Caduff, R., Christiansen, H. H., Darrow, M. M., Delaloye, R., Etzelmüller, B., Humlum, O., Lambiel, C., Lilleøren, K. S., Mair, V., Pellegrinon, G., Rouyet, L., Ruiz, L., and Strozzi, T.: Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide, The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, 2022.
Bodin, X., Rojas, F., and Brenning, A.: Status and evolution of the
cryosphere in the Andes of Santiago (Chile, 33.5∘ S.),
Geomorphology, 118, 453–464, https://doi.org/10.1016/j.geomorph.2010.02.016,
2010.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of
uncertainty and variability in rock glacier inventories, Earth Surf.
Processes, 44, 2450–2466, https://doi.org/10.1002/esp.4674, 2019.
Brenning, A.: Geomorphological, hydrological and climatic significance of
rock glaciers in the Andes of Central Chile (33–35∘ S), Permafrost
Periglac., 16, 231–240, https://doi.org/10.1002/ppp.528, 2005a.
Brenning, A.: Climatic and geomorphological controls of rock glaciers in the
Andes of Central Chile, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät II, https://doi.org/10.18452/15332, 2005b.
Brenning, A.: The significance of rock glaciers in the dry Andes – reply to
L. Arenson and M. Jakob, Permafrost Periglac., 21, 286–288,
2010.
Buchli, T., Kos, A., Limpach, P., Merz, K., Zhou, X. H., and Springman, S.
M.: Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland,
Permafrost Periglac., 29, 3–20, https://doi.org/10.1002/ppp.1968, 2018.
Carslaw, H. S. and Jaeger, J. C.: Conduction of heat in solids, Oxford
Science Publications, Clarendon Press, Oxford, ISBN 9780198533689, 1959.
Chen, C. W. and Zebker, H. A.: Phase unwrapping for large SAR
interferograms: statistical segmentation and generalized network models,
IEEE T. Geosci Remote, 40, 1709–1719,
https://doi.org/10.1109/TGRS.2002.802453, 2002.
Cicoira, A., Beutel, J., Faillettaz, J., Gärtner-Roer, I., and Vieli, A.: Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach, The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, 2019a.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet Sc. Lett., 528, 115844,
https://doi.org/10.1016/j.epsl.2019.115844, 2019b.
Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L. U.,
and Vieli, A.: A general theory of rock glacier creep based on in-situ and
remote sensing observations, Permafrost Periglac., 32, 139–153,
https://doi.org/10.1002/ppp.2090, 2020.
Corte, A.: The Hydrological Significance of Rock Glaciers, J. Glaciol., 17,
157–158, https://doi.org/10.3189/s0022143000030859, 1976.
Croce, F. A. and Milana, J. P.: Internal structure and behaviour of a rock
glacier in the Arid Andes of Argentina, Permafrost Periglac., 13, 289–299,
https://doi.org/10.1002/ppp.431, 2002.
Cuffey, K. and Paterson, W. S. B.: The physics of glaciers, 4th edn.,
Butterworth-Heinemann/Elsevier, Burlington, MA, ISBN 978-0123694614, 2010.
Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., and
Gachet, S.: Rapidly moving rock glaciers in Mattertal, Geogr. Helv., 29, 21–31,
2013.
Duguay, M. A., Edmunds, A., Arenson, L. U., and Walnstein, P. A.: Quantifying the significance of the hydrological contribution of a rock glacier – A review, in: Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference (GeoQuébec 2015), 2015.
Fujii, Y. and Higuchi, K.: Ground Temperature and its Relation to
Permafrost Occurrences in the Khumbu Region and Hidden Valley, Journal of
Japanese Society of Snow and Ice, 38, 125–128,
https://doi.org/10.5331/seppyo.38.Special_125, 1976.
Fukui, K., Fujii, Y., Ageta, Y., and Asahi, K.: Changes in the lower limit
of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal
Himalayas, Global Planet. Change, 55, 251–256.
https://doi.org/10.1016/j.gloplacha.2006.06.002, 2007.
Geiger, S. T., Daniels, J. M., Miller, S. N., and Nicholas, J. W.: Influence
of Rock Glaciers on Stream Hydrology in the La Sal Mountains, Utah, Arct.
Antarct. Alp. Res., 46, 645–658,
https://doi.org/10.1657/1938-4246-46.3.645, 2014.
Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. Lond. A Mat.,
228, 519–538, https://doi.org/10.1098/rspa.1955.0066, 1955.
Guglielmin, M., Camusso, M., Polesello, S., and Valsecchi, S.: An old relict
glacier body preserved in permafrost environment: The Foscagno rock glacier
ice core (Upper Valtellina, Italian central Alps), Arct.
Antarct. Alp. Res., 36, 108–116, https://doi.org/10.1657/1523-0430(2004)036[0108:AORGBP]2.0.CO;2, 2004.
Haeberli, W.: Modern research perspectives relating to permafrost creep and
rock glaciers: A discussion, Permafrost Periglac., 11, 290–293,
https://doi.org/10.1002/1099-1530(200012)11:4<290::AID-PPP372>3.0.CO;2-0, 2000.
Haeberli, W., Hoelzle, M., Kääb, A., Keller, F., Vonder Mühll, D., and Wagner, S.: Ten years after drilling through the permafrost of the active rock glacier Murtèl, eastern Swiss Alps: answered questions and new perspectives, in: Collection Nordicana, 7th International Conference on Permafrost, edited by: Lewkowicz, A. G. and Allard, M., 23–27 June 1998, Université Laval, Yellowknife, Canada, 403–410, 1998.
Hanssen, R. F.: Radar interferometry : data interpretation and error analysis, Dordrecht Boston: Kluwer Academic, ISBN 0792369459, 2001.
Harrington, J. S., Mozil, A., Hayashi, M., and Bentley, L. R.: Groundwater
flow and storage processes in an inactive rock glacier, Hydrol. Process., 32,
3070–3088, https://doi.org/10.1002/hyp.13248, 2018.
Hauck, C.: New concepts in geophysical surveying and data interpretation for
permafrost terrain, Permafrost Periglac., 24, 131–137,
https://doi.org/10.1002/ppp.1774, 2013.
Hausmann, H., Krainer, K., Bruckl, E., and Mostler, W.: Internal structure
and ice content of reichenkar rock glacier (Stubai alps, Austria) assessed
by geophysical investigations, Permafrost Periglac., 18, 351–367,
https://doi.org/10.1002/ppp.601, 2007.
Hoelzle, M., Wagner, S., Kääb, A., and Vonder Mühll, D.: Surface
movement and internal deformation of ice-rock mixtures within rock glaciers
in the Upper Engadin, Switzerland, Proceedings of the 7th International
Conference on Permafrost, 465–471, ISBN 2920197576, 1998.
Hu, Y., Liu, L., Wang, X., Zhao, L., Wu, T., Cai, J., Zhu, X., and Hao, J.:
Quantification of permafrost creep provides kinematic evidence for
classifying a puzzling periglacial landform, Earth Surf. Proc. Land., 46,
465–477, https://doi.org/10.1002/esp.5039, 2021.
isce-framework: InSAR Scientific Computing Environment version 2 (ISCE2), version 2.4.2, GitHub [code] https://github.com/isce-framework/isce2/releases/tag/v2.4.2, last access: 17 November 2020.
Jakob, M.: Active rock glaciers and the lower limit of discontinuous alpine
permafrost, Khumbu-Himalaya, Nepal, Permafrost Periglac., 3, 253–256, 1992.
Janke, J. R., Ng, S., and Bellisario, A.: An inventory and estimate of water
stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers
in the Aconcagua River Basin, Chile, Geomorphology, 296, 142–152,
https://doi.org/10.1016/j.geomorph.2017.09.002, 2017.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock
glaciers contain globally significant water stores, Sci. Rep., 8, 2834,
https://doi.org/10.1038/s41598-018-21244-w, 2018a.
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and
Betts, R. A.: The distribution and hydrological significance of rock
glaciers in the Nepalese Himalaya, Global Planet. Change, 160, 123–142,
https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b.
Jones, D. B., Harrison, S., and Anderson, K.: Mountain glacier-to-rock
glacier transition, Global Planet. Change, 181, 102999,
https://doi.org/10.1016/j.gloplacha.2019.102999, 2019a.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019b.
Jones, D. B., Harrison, S., Anderson, K., Shannon, S., and Betts, R. A.:
Rock glaciers represent hidden water stores in the Himalaya, Sci. Total
Environ., 793, 145368, https://doi.org/10.1016/j.scitotenv.2021.145368, 2021.
Kääb, A., Frauenfelder, R., and Roer, I.: On the response of
rockglacier creep to surface temperature increase, Global Planet. Change,
56, 172–187, https://doi.org/10.1016/j.gloplacha.2006.07.005, 2007.
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M.: How
rock glacier hydrology, deformation velocities and ground temperatures
interact: Examples from the Swiss Alps, Permafrost Periglac., 31, 3–14,
https://doi.org/10.1002/ppp.2023, 2019.
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in
geophysical methods for permafrost investigations, Permafrost Periglac., 19,
157–178, https://doi.org/10.1002/ppp.616, 2008.
Knight, J., Harrison, S., and Jones, D. B.: Rock glaciers and the
geomorphological evolution of deglacierizing mountains, Geomorphology, 324,
14–24, https://doi.org/10.1016/j.geomorph.2018.09.020, 2019.
Krainer, K. and Mostler, W.: Hydrology of Active Rock Glaciers: Examples
from the Austrian Alps, Arct. Antarct. Alp. Res., 34, 142–149,
https://doi.org/10.1080/15230430.2002.12003478, 2002.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A
10 300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res., 83,
324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Ladanyi, B.: Rheology of ice/rock systems and interfaces, in: Proceedings of the 8th International Conference on Permafrost, The 8th International Conference on Permafrost, Zurich, Switzerland, 621–626, ISBN 9058095827, 2003.
Leopold, M., Williams, M. W., Caine, N., Völkel, J., and Dethier, D.:
Internal structure of the Green Lake 5 rock glacier, Colorado Front Range,
USA, Permafrost Periglac., 22, 107–119, https://doi.org/10.1002/ppp.706,
2011.
Liu, L., Millar, C. I., Westfall, R. D., and Zebker, H. A.: Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR, The Cryosphere, 7, 1109–1119, https://doi.org/10.5194/tc-7-1109-2013, 2013.
Massonnet, D. and Feigl, K. L.: Radar interferometry and its application to
changes in the Earth's surface, Rev. Geophys., 36, 441–500,
https://doi.org/10.1029/97rg03139, 1998.
Mellor, M. and Testa, R.: Effect of temperature on the creep of ice, J.
Glaciol., 8, 131–145, 1969.
Monnier, S. and Kinnard, C.: Internal structure and composition of a rock
glacier in the Andes (upper Choapa valley, Chile) using borehole information
and ground-penetrating radar, Ann. Glaciol., 54, 61–72,
https://doi.org/10.3189/2013AoG64A107, 2013.
Monnier, S. and Kinnard, C.: Internal structure and composition of a rock
glacier in the Dry Andes, Inferred from ground-penetrating radar data and
its artefacts, Permafrost Periglac., 26, 335–346,
https://doi.org/10.1002/ppp.1846, 2015.
Monnier, S. and Kinnard, C.: Interrogating the time and processes of
development of the Las Liebres rock glacier, central Chilean Andes, using a
numerical flow model, Earth Surf. Proc. Land., 41, 1884–1893,
https://doi.org/10.1002/esp.3956, 2016.
Moore, P. L.: Deformation of debris-ice mixtures, Rev. Geophys., 52,
435–467, https://doi.org/10.1002/2014rg000453, 2014.
Munroe, J. S.: Distribution, evidence for internal ice, and possible
hydrologic significance of rock glaciers in the Uinta Mountains, Utah, USA,
Quaternary Res., 90, 50–65, https://doi.org/10.1017/qua.2018.24, 2018.
Nan, Z., Li, S., and Liu, Y.: Mean annual ground temperature distribution on
the Tibetan plateau: Permafrost distribution mapping and further
application, J. Glaciol. Geocryol., 24, 142–148, 2002.
Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G.,
Heim, B., Hugelius, G., Irrgang, A., Kääb, A. M., Kroisleitner, C.,
Matthes, H., Nitze, I., Pellet, C., Seifert, F. M., Strozzi, T.,
Wegmüller, U., Wieczorek, M., and Wiesmann, A.: ESA Permafrost Climate
Change Initiative (Permafrost_cci): Permafrost version 2 data
products, Centre for Environmental Data Analysis, ESA CCI [data set], http://catalogue.ceda.ac.uk/uuid/1f88068e86304b0fbd34456115b6606f (last access: 30 June 2020),
2020.
Oerlemans, J.: Glaciers and climate change, A. A. Balkema Publishers, Lisse, ISBN 9789026518133,
2001.
PERMOS: Permafrost in Switzerland 2014/2015 to 2017/2018, edited by:
Noetzli, J., Luethi, R., and Staub, B., the Cryospheric Commission of the
Swiss Academy of Sciences, Glaciological Report (Permafrost) 12–15, 104
pp., 2019.
Perucca, L. and Esper Angillieri, M. Y.: Glaciers and rock glaciers'
distribution at 28∘ SL, Dry Andes of Argentina, and some
considerations about their hydrological significance, Environ. Earth
Sci., 64, 2079–2089, https://doi.org/10.1007/s12665-011-1030-z, 2011.
Pruessner, L., Huss, M., Phillips, M., and Farinotti, D.: A framework for
modeling rock glaciers and permafrost at the basin-scale in high alpine
catchments, J. Adv. Model. Earth Sy., 13,
e2020MS002361, https://doi.org/10.1029/2020ms002361, 2021.
Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A. P., and
Pacheco, P.: A first rock glacier inventory for the Bolivian Andes,
Permafrost Periglac., 25, 333–343, https://doi.org/10.1002/ppp.1816, 2014.
Rangecroft, S., Harrison, S., and Anderson, K.: Rock Glaciers as Water
Stores in the Bolivian Andes: An Assessment of Their Hydrological
Importance, Arct. Antarct. Alp. Res., 47, 89–98,
https://doi.org/10.1657/AAAR0014-029, 2015.
Reinosch, E., Gerke, M., Riedel, B., Schwalb, A., Ye, Q., and Buckel, J.:
Rock glacier inventory of the western Nyainqêntanglha Range, Tibetan
Plateau, supported by InSAR time series and automated classification,
Permafrost Periglac., 32, 657–672, https://doi.org/10.1002/ppp.2117, 2021.
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen,
Y.: Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard,
investigated by InSAR, Remote Sens. Environ., 231, 111236,
https://doi.org/10.1016/j.rse.2019.111236, 2019.
Salerno, F., Guyennon, N., Thakuri, S., Viviano, G., Romano, E., Vuillermoz, E., Cristofanelli, P., Stocchi, P., Agrillo, G., Ma, Y., and Tartari, G.: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013), The Cryosphere, 9, 1229–1247, https://doi.org/10.5194/tc-9-1229-2015, 2015.
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015.
Scott, W. J., Sellmann, P. V., and Hunter, J. A.: Geophysics in the study of
permafrost, in: Geotechnical and Environmental Geophysics: Volume I, Review
and Tutorial, 355–384, https://doi.org/10.1190/1.9781560802785.ch13, 1990.
Scotti, R., Crosta, G. B., and Villa, A.: Destabilisation of Creeping
Permafrost: The Plator Rock Glacier Case Study (Central Italian Alps),
Permafrost Periglac., 28, 224–236, https://doi.org/10.1002/ppp.1917, 2017.
Steig, E. J., Fitzpatrick, J. J., Potter, j. N., and Clark, D. H.: The
geochemical record in rock glaciers, Geogr. Ann. A., 80, 277–286,
https://doi.org/10.1111/j.0435-3676.1998.00043.x, 1998.
Strozzi, T., Kääb, A., and Frauenfelder, R.: Detecting and
quantifying mountain permafrost creep from in situ inventory, space-borne
radar interferometry and airborne digital photogrammetry, Int. J. Remote Sens.,
25, 2919–2931, https://doi.org/10.1080/0143116042000192330, 2004.
Swiss Permafrost Monitoring Network (PERMOS): Swiss Permafrost Monitoring Network Database, Fribourg and Davos, Switzerland, PERMOS Database [data set], https://doi.org/10.13093/permos-2021-01, 2021.
Wagner, T., Kainz, S., Helfricht, K., Fischer, A., Avian, M., Krainer, K.,
and Winkler, G.: Assessment of liquid and solid water storage in rock
glaciers versus glacier ice in the Austrian Alps, Sci. Total
Environ., 800, 149593, https://doi.org/10.1016/j.scitotenv.2021.149593,
2021.
Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., and Liu, G.: Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry, The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, 2017.
Way, R. G., Wang, Y., Bevington, A. R., Bonnaventure, P. P., Burton, J. R.,
Davis, E., Garibaldi, M. C., Lapalme, C. M., Tutton, R., Wehbe, M. A. E.:
Consensus-Based Rock Glacier Inventorying in the Torngat Mountains, Northern
Labrador, American Society of Civil Engineers Proceedings, Regional
Conference on Permafrost and the 19th International Conference on Cold
Regions Engineering, 24–29 October 2021, https://doi.org/10.31223/X5C60W, 2021.
Whalley, W. B. and Azizi, F.: Rheological models of active rock glaciers –
evaluation, critique and a possible test, Permafrost Periglac., 5, 37–51,
https://doi.org/10.1002/ppp.3430050105, 1994.
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer, A.,
Benischke, R., Leis, A., Morawetz, R., Schreilechner, M. G., and Hergarten,
S.: Identification and assessment of groundwater flow and storage components
of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps
(Austria), Hydrogeol. J., 24, 937–953,
https://doi.org/10.1007/s10040-015-1348-9, 2016.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Zhang, X., Feng, M., Zhang, H., Wang, C., Tang, Y., Xu, J., Yan, D., and
Wang, C.: Detecting rock glacier displacement in the Central Himalayas using
multi-temporal InSAR, Remote Sens., 13, 4738,
https://doi.org/10.3390/rs13234738, 2021.
Zhao, L., and Sheng, Y.: Permafrost survey manual, Science Press, Beijing, ISBN 9787030456113,
2015.
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Rock glaciers are considered to be important freshwater reservoirs in the future climate....