Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1895-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1895-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings
Aaron Cremona
CORRESPONDING AUTHOR
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Matthias Huss
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Johannes Marian Landmann
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich-Airport, Zurich, Switzerland
Joël Borner
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Daniel Farinotti
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Related authors
No articles found.
Bastien Ruols, Johanna Klahold, Daniel Farinotti, and James Irving
EGUsphere, https://doi.org/10.5194/egusphere-2024-3074, https://doi.org/10.5194/egusphere-2024-3074, 2024
Short summary
Short summary
We demonstrate the use of a drone-based ground-penetrating radar (GPR) system to gather high-resolution, high-density 4D data over a near-terminus glacier collapse feature. We monitor the growth of an air cavity and the evolution of the subglacial drainage system, providing new insights into the dynamics of collapse events. This work highlights potential future applications of drone-based GPR for monitoring glaciers, in particular in regions which are inaccessible with surface-based methods.
Ian Delaney, Andrew Tedstone, Mauro A. Werder, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2580, https://doi.org/10.5194/egusphere-2024-2580, 2024
Short summary
Short summary
Sediment transport in rivers and under glaciers depends on water velocity and channel width. In rivers, water discharge changes affect flow depth, width, and velocity. Under glaciers, pressurized water changes velocity more than shape. Due to these differences, this study shows that sediment transport under glaciers varies widely and peaks before water flow does, creating a complex relationship. Understanding these dynamics helps interpret sediment discharge from glaciers in different climates.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378, https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug.) and total precipitation (Oct.–Febr.). Our model can accurately predict glacier mass from 1961–2021 but struggles for extreme years (2022 and 2023).
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Preprint under review for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1571, https://doi.org/10.5194/egusphere-2024-1571, 2024
Short summary
Short summary
In the present work, we provide a new ice-thickness reconstruction of the Antarctic Peninsula Ice Sheet north of 70º S by using inversion modeling. This model consists of two steps; the first takes basic assumptions of the rheology of the glacier, and the second uses mass conservation to improve the reconstruction where the previously made assumptions are expected to fail. Validation with independent data showed that our reconstruction improved compared to other reconstruction available.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Mette Kusk Gillespie, Liss Marie Andreassen, Matthias Huss, Simon de Villiers, Kamilla Hauknes Sjursen, Jostein Aasen, Jostein Bakke, Jan Magne Cederstrøm, Halgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd Daniel Nerhus, Torgeir Opeland Røthe, Eivind Nagel Wilhelm Støren, Kåre Øst, and Jacob Clement Yde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-167, https://doi.org/10.5194/essd-2024-167, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an extensive new ice thickness dataset from Jostedalsbreen ice cap which will serve as baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 m ± 22 m and an ice volume of 70.6 ± 10.2 km3. Ice of less than 50 m thickness covers two narrow regions of the ice cap, and Jostedalsbreen is likely to separate into three smaller ice caps in a warming climate.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1086, https://doi.org/10.5194/egusphere-2024-1086, 2024
Short summary
Short summary
In a study of eight landslides adjacent to glaciers in Alaska, we found that landslide movement increased as the glacier retreated past the landslide at four sites. Movement at other sites coincided with heavy precipitation or increased glacier thinning, and two sites showed little-to-no motion. We suggest that landslides next to water-terminating glaciers may be especially vulnerable to acceleration, which we guess is due to faster retreat rates and water replacing ice at the landslide edge.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
EGUsphere, https://doi.org/10.5194/egusphere-2024-646, https://doi.org/10.5194/egusphere-2024-646, 2024
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice-bedrock interface. In 4 months of seismic records, we detect spatiotemporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modeling techniques. This low-velocity layer results from temporary water storage within the glacier.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1013, https://doi.org/10.5194/egusphere-2024-1013, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Rebecca Gugerli, Nadine Salzmann, Matthias Huss, and Darin Desilets
The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, https://doi.org/10.5194/tc-13-3413-2019, 2019
Short summary
Short summary
The snow water equivalent (SWE) in high mountain regions is crucial for many applications. Yet its quantification remains difficult. We present autonomous daily SWE observations by a cosmic ray sensor (CRS) deployed on a Swiss glacier for two winter seasons. Combined with snow depth observations, we derive the daily bulk snow density. The validation with manual field observations and its measurement reliability show that the CRS is a promising device for high alpine cryospheric environments.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary
Short summary
Mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable community-driven model exists. Here we present the Open Global Glacier Model (OGGM; www.oggm.org), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world.
Kathrin Naegeli, Matthias Huss, and Martin Hoelzle
The Cryosphere, 13, 397–412, https://doi.org/10.5194/tc-13-397-2019, https://doi.org/10.5194/tc-13-397-2019, 2019
Short summary
Short summary
The paper investigates the temporal changes of bare-ice glacier surface albedo in the Swiss Alps between 1999 and 2016 from a regional to local scale using satellite data. Significant negative trends were found in the lowermost elevations and margins of the ablation zones. Although significant changes of glacier ice albedo are only present over a limited area, we emphasize that albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future.
Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison
The Cryosphere, 13, 325–350, https://doi.org/10.5194/tc-13-325-2019, https://doi.org/10.5194/tc-13-325-2019, 2019
Short summary
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Vanessa Round, Silvan Leinss, Matthias Huss, Christoph Haemmig, and Irena Hajnsek
The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, https://doi.org/10.5194/tc-11-723-2017, 2017
Short summary
Short summary
Recent surging of Kyagar Glacier (Karakoram) caused a hazardous ice-dammed lake to form and burst in 2015 and 2016. We use remotely sensed glacier surface velocities and surface elevation to observe dramatic changes in speed and mass distribution during the surge. The surge was hydrologically controlled with rapid summer onset and dramatic termination following lake outburst. Since the surge, the potential outburst hazard has remained high, and continued remote monitoring is crucial.
Mauro Fischer, Matthias Huss, Mario Kummert, and Martin Hoelzle
The Cryosphere, 10, 1279–1295, https://doi.org/10.5194/tc-10-1279-2016, https://doi.org/10.5194/tc-10-1279-2016, 2016
Short summary
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.
James S. Douglas, Matthias Huss, Darrel A. Swift, Julie M. Jones, and Franco Salerno
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-116, https://doi.org/10.5194/tc-2016-116, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Glacier behaviour in high-mountain Asia is different from other regions due to debris cover and ice stagnation. This study incorporates these factors into a glacio-hydrological model for the first time at the Khumbu Glacier, Nepal. We show that including debris provides a more realistic representation of the Khumbu Glacier than in previous runoff models, and that changes to the debris surface significantly influence glacier and runoff evolution, with impacts on downstream water resources.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, https://doi.org/10.5194/tc-9-525-2015, 2015
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015, https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
H. Machguth and M. Huss
The Cryosphere, 8, 1741–1755, https://doi.org/10.5194/tc-8-1741-2014, https://doi.org/10.5194/tc-8-1741-2014, 2014
M. Huss and D. Farinotti
The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014, https://doi.org/10.5194/tc-8-1261-2014, 2014
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
D. Farinotti and M. Huss
The Cryosphere, 7, 1707–1720, https://doi.org/10.5194/tc-7-1707-2013, https://doi.org/10.5194/tc-7-1707-2013, 2013
D. Finger, A. Hugentobler, M. Huss, A. Voinesco, H. Wernli, D. Fischer, E. Weber, P.-Y. Jeannin, M. Kauzlaric, A. Wirz, T. Vennemann, F. Hüsler, B. Schädler, and R. Weingartner
Hydrol. Earth Syst. Sci., 17, 3261–3277, https://doi.org/10.5194/hess-17-3261-2013, https://doi.org/10.5194/hess-17-3261-2013, 2013
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
M. Huss
The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, https://doi.org/10.5194/tc-7-877-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Mass Balance Obs
Reanalysis of the longest mass balance series in Himalaya using nonlinear model: Chhota Shigri Glacier (India)
Accumulation by avalanches as significant contributor to the mass balance of a High Arctic mountain glacier
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
Central Asia's spatiotemporal glacier response ambiguity due to data inconsistencies and regional simplifications
Recent contrasting behaviour of mountain glaciers across the European High Arctic revealed by ArcticDEM data
Characteristics of mountain glaciers in the northern Japanese Alps
Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains
Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra
Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations
Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016
Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China
Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada
Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys
Local topography increasingly influences the mass balance of a retreating cirque glacier
Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations
Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016
Mohd Farooq Azam, Christian Vincent, Smriti Srivastava, Etienne Berthier, Patrick Wagnon, Himanshu Kaushik, Arif Hussain, Manoj Kumar Munda, Arindan Mandal, and Alagappan Ramanathan
EGUsphere, https://doi.org/10.5194/egusphere-2024-644, https://doi.org/10.5194/egusphere-2024-644, 2024
Short summary
Short summary
Mass balance series on Chhota Shigri Glacier has been reanalysed by combining the traditional mass balance reanalysis framework and a nonlinear model. The nonlinear model is preferred over traditional glaciological method to compute the mass balances as the former can capture the spatiotemporal variability of point mass balances from a heterogeneous in-situ point mass balance network. The nonlinear model outperforms the traditional method and agrees better with the geodetic estimates.
Bernhard Hynek, Daniel Binder, Michele Citterio, Signe Hillerup Larsen, Jakob Abermann, Geert Verhoeven, Elke Ludewig, and Wolfgang Schöner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-157, https://doi.org/10.5194/tc-2023-157, 2023
Revised manuscript accepted for TC
Short summary
Short summary
A strong avalanche event in winter 2018 caused thick snow deposits on Freya Glacier, a mountain glacier in Northeast Greenland. The avalanche deposits led to positive elevation changes during the study period 2013–2021 and altered the mass balance of the glacier significantly. The eight year mass balance was positive, it would have been negative without avalanches. The contribution from snow avalanches might become more important with rising temperatures in the Arctic.
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023, https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
Short summary
The Glacier Loss Day (GLD) is the day on which all mass gained from the accumulation period is lost, and the glacier loses mass irrecoverably for the rest of the mass balance year. In 2022, the GLD was already reached on 23 June at Hintereisferner (Austria), and this led to a record-breaking mass loss. We introduce the GLD as a gross yet expressive indicator of the glacier’s imbalance with a persistently warming climate.
Martina Barandun and Eric Pohl
The Cryosphere, 17, 1343–1371, https://doi.org/10.5194/tc-17-1343-2023, https://doi.org/10.5194/tc-17-1343-2023, 2023
Short summary
Short summary
Meteorological and glacier mass balance data scarcity introduces large uncertainties about drivers of heterogeneous glacier mass balance response in Central Asia. We investigate the consistency of interpretations derived from various datasets through a systematic correlation analysis between climatic and static drivers with mass balance estimates. Our results show in particular that even supposedly similar datasets lead to different and partly contradicting assumptions on dominant drivers.
Jakub Małecki
The Cryosphere, 16, 2067–2082, https://doi.org/10.5194/tc-16-2067-2022, https://doi.org/10.5194/tc-16-2067-2022, 2022
Short summary
Short summary
This study presents a snapshot of the recent state of small mountain glaciers across the European High Arctic, where severe climate warming has been occurring over the past years. The analysis revealed that this class of ice mass might melt away from many study sites within the coming two to five decades even without further warming. Glacier changes were, however, very variable in space, and some glaciers have been gaining mass, but the exact drivers behind this phenomenon are unclear.
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere, 16, 1091–1106, https://doi.org/10.5194/tc-16-1091-2022, https://doi.org/10.5194/tc-16-1091-2022, 2022
Short summary
Short summary
In recent years, seven glaciers are confirmed in the northern Japanese Alps. However, their mass balance has not been clarified. In this study, we calculated the seasonal and continuous annual mass balance of these glaciers during 2015–2019 by the geodetic method using aerial images and SfM–MVS technology. Our results showed that the mass balance of these glaciers was different from other glaciers in the world. The characteristics of Japanese glaciers provide new insights for earth science.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Feiteng Wang, Xiaoying Yue, Lin Wang, Huilin Li, Zhencai Du, Jing Ming, and Zhongqin Li
The Cryosphere, 14, 2597–2606, https://doi.org/10.5194/tc-14-2597-2020, https://doi.org/10.5194/tc-14-2597-2020, 2020
Short summary
Short summary
How to mitigate the melting of most mountainous glaciers is a disturbing issue for scientists and the public. We chose the Muz Taw Glacier of the Sawir Mountains as our study object. We carried out two artificial precipitation experiments on the glacier to study the role of precipitation in mitigating its melting. The average mass loss from the glacier decreased by over 14 %. We also propose a possible mechanism describing the role of precipitation in mitigating the melting of the glaciers.
Shuang Yi, Chunqiao Song, Kosuke Heki, Shichang Kang, Qiuyu Wang, and Le Chang
The Cryosphere, 14, 2267–2281, https://doi.org/10.5194/tc-14-2267-2020, https://doi.org/10.5194/tc-14-2267-2020, 2020
Short summary
Short summary
High-Asia glaciers have been observed to be retreating the fastest in the southeastern Tibeten Plateau, where vast amounts of glacier and snow feed the streamflow of the Brahmaputra. Here, we provide the first monthly glacier and snow mass balance during 2002–2017 based on satellite gravimetry. The results confirm previous long-term decreases but reveal strong seasonal variations. This work helps resolve previous divergent model estimates and underlines the importance of meltwater.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Wael Abdel Jaber, Helmut Rott, Dana Floricioiu, Jan Wuite, and Nuno Miranda
The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, https://doi.org/10.5194/tc-13-2511-2019, 2019
Short summary
Short summary
We use topographic maps from two radar remote-sensing missions to map surface elevation changes of the northern and southern Patagonian ice fields (NPI and SPI) for two epochs (2000–2012 and 2012–2016). We find a heterogeneous pattern of thinning within the ice fields and a varying temporal trend, which may be explained by complex interdependence between surface mass balance and effects of flow dynamics. The contribution to sea level rise amounts to 0.05 mm a−1 for both ice fields for 2000–2016.
Chunhai Xu, Zhongqin Li, Huilin Li, Feiteng Wang, and Ping Zhou
The Cryosphere, 13, 2361–2383, https://doi.org/10.5194/tc-13-2361-2019, https://doi.org/10.5194/tc-13-2361-2019, 2019
Short summary
Short summary
We take Urumqi Glacier No. 1 as an example and validate a long-range terrestrial laser scanner (TLS) as an efficient tool for monitoring annual and intra-annual mass balances, especially for inaccessible glacier areas where no glaciological measurements are available. The TLS has application potential for glacier mass-balance monitoring in China. For wide applications of the TLS, we can select some benchmark glaciers and use stable scan positions and in-situ-measured densities of snow–firn.
Ben M. Pelto, Brian Menounos, and Shawn J. Marshall
The Cryosphere, 13, 1709–1727, https://doi.org/10.5194/tc-13-1709-2019, https://doi.org/10.5194/tc-13-1709-2019, 2019
Short summary
Short summary
Changes in glacier mass are the direct response to meteorological conditions during the accumulation and melt seasons. We derived multi-year, seasonal mass balance from airborne laser scanning surveys and compared them to field measurements for six glaciers in the Columbia and Rocky Mountains, Canada. Our method can accurately measure seasonal changes in glacier mass and can be easily adapted to derive seasonal mass change for entire mountain ranges.
Daniel McGrath, Louis Sass, Shad O'Neel, Chris McNeil, Salvatore G. Candela, Emily H. Baker, and Hans-Peter Marshall
The Cryosphere, 12, 3617–3633, https://doi.org/10.5194/tc-12-3617-2018, https://doi.org/10.5194/tc-12-3617-2018, 2018
Short summary
Short summary
Measuring the amount and spatial pattern of snow on glaciers is essential for monitoring glacier mass balance and quantifying the water budget of glacierized basins. Using repeat radar surveys for 5 consecutive years, we found that the spatial pattern in snow distribution is stable over the majority of the glacier and scales with the glacier-wide average. Our findings support the use of sparse stake networks for effectively measuring interannual variability in winter balance on glaciers.
Caitlyn Florentine, Joel Harper, Daniel Fagre, Johnnie Moore, and Erich Peitzsch
The Cryosphere, 12, 2109–2122, https://doi.org/10.5194/tc-12-2109-2018, https://doi.org/10.5194/tc-12-2109-2018, 2018
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Helmut Rott, Wael Abdel Jaber, Jan Wuite, Stefan Scheiblauer, Dana Floricioiu, Jan Melchior van Wessem, Thomas Nagler, Nuno Miranda, and Michiel R. van den Broeke
The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, https://doi.org/10.5194/tc-12-1273-2018, 2018
Short summary
Short summary
We analysed volume change, mass balance and ice flow of glaciers draining into the Larsen A and Larsen B embayments on the Antarctic Peninsula for 2011 to 2013 and 2013 to 2016. The mass balance is based on elevation change measured by the radar satellite mission TanDEM-X and on the mass budget method. The glaciers show continuing losses in ice mass, which is a response to ice shelf break-up. After 2013 the downwasting of glaciers slowed down, coinciding with years of persistent sea ice cover.
Cited articles
A2PS contributors: SmartStake: Monitor the glacier ablation with sub-hourly
time step and millimetric accuracy,
https://a2photonicsensors.com/smartstake-monitor-glacier-ablation/
(last access: 13 December 2022), 2021. a
Anghileri, D., Botter, M., Castelletti, A., Weigt, H., and Burlando, P.: A
comparative assessment of the impact of climate change and energy policies on
Alpine hydropower, Water Resour. Res., 54, 9144–9161,
https://doi.org/10.1029/2017WR022289, 2018. a
Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, AL., Favier, V., Mandal, A., and Pottakkal, J. G.: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements, The Cryosphere, 8, 2195–2217, https://doi.org/10.5194/tc-8-2195-2014, 2014. a
Bamber, J. L. and Rivera, A.: A review of remote sensing methods for glacier
mass balance determination, Global Planet. Change, 59, 138–148,
https://doi.org/10.1016/j.gloplacha.2006.11.031, 2007. a
Bauder, A., Matthias, H., and Linsbauer, A. (Eds.): The Swiss Glaciers
2017/18 and 2018/19: Glaciological Report No. 139/140,
https://doi.org/10.18752/glrep_139-140, 2020. a
Beniston, M.: The 2003 heat wave in Europe: A shape of things to come? An
analysis based on Swiss climatological data and model simulations,
Geophys. Res. Lett., 31, L02202,
https://doi.org/10.1029/2003GL018857, 2004. a
Beniston, M. and Diaz, H. F.: The 2003 heat wave as an example of summers in a
greenhouse climate? Observations and climate model simulations for Basel,
Switzerland, Global Planet. Change, 44, 73–81,
https://doi.org/10.1016/j.gloplacha.2004.06.006, 2004. a
Beraud, L., Cusicanqui, D., Rabatel, A., Brun, F., Vincent, C., and Six, D.:
Glacier-wide seasonal and annual geodetic mass balances from Pléiades
stereo images: application to the Glacier d'Argentière, French
Alps, J. Glaciol., 1–13, https://doi.org/10.1017/jog.2022.79, 2022. a
Borner, J. and Cremona, A.: Determine real-time glacier mass changes from
camera images [code documentation],
https://rtgmc.readthedocs.io/en/latest/index.html (Last access: 25 February 2023), 2020. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 25, 120–125, 2000. a
Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland
ice sheet studied by energy-balance modelling, J. Glaciol., 41,
153–160, https://doi.org/10.3189/S0022143000017846, 1995. a
Carturan, L., Baroni, C., Brunetti, M., Carton, A., Dalla Fontana, G., Salvatore, M. C., Zanoner, T., and Zuecco, G.: Analysis of the mass balance time series of glaciers in the Italian Alps, The Cryosphere, 10, 695–712, https://doi.org/10.5194/tc-10-695-2016, 2016. . a
Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan,
M. T., Qin, D., and Woodworth, P. L.: Changes in sea level, in: Climate Change 2001: The Scientific Basis:
Contribution of Working Group I to the Third Assessment Report of the
Intergovernmental Panel, edited by:
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X.,
Maskell, K., and Johnson, C. A., Cambridge University Press, 639–694, ISBN 0521807670, 2001. a
Cogley, J. G., Arendt, A., Bauder, A., Braithwaite, R., Hock, R., Jansson, P.,
Kaser, G., Moller, M., Nicholson, L., Rasmussen, L., and Zemp, M.: Glossary of
glacier mass balance and related terms, IHP-VII Technical Documents in Hydrology, International Hydrological Programme,
2010. a
Cremona, A.: Example application of the automated ice ablation reading on
Findelgletscher, TIB AV-Portal [video], https://doi.org/10.5446/60100, 2022. a
Cremona, A.: Heat wave contribution to 2022's extreme glacier melt from automated real-time ice ablation readings, ETH Zurich [data set],
https://doi.org/10.3929/ethz-b-000602387, 2023. a
Cremona, A., Huss, M., Landmann, J. M., Borner, J., and Farinotti, D.: Heat
wave contribution to 2022's extreme glacier melt from automated real-time
ice ablation readings, Zenodo [code], https://doi.org/10.5281/zenodo.7405281, 2023. a, b
Cullen, N. J., Mölg, T., Kaser, G., Steffen, K., and Hardy, D. R.:
Energy-balance model validation on the top of Kilimanjaro, Tanzania,
using eddy covariance data, Ann. Glaciol., 46, 227–233,
https://doi.org/10.3189/172756407782871224, 2007. a
Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R., and Arnaud, Y.: Region-wide
annual glacier surface mass balance for the European Alps from 2000 to
2016, Front. Earth Sci., 8, 149, https://doi.org/10.3389/feart.2020.00149,
2020. a
Denzinger, F., Machguth, H., Barandun, M., Berthier, E., Girod, L., Kronenberg,
M., Usubaliev, R., and Hoelzle, M.: Geodetic mass balance of Abramov
Glacier from 1975 to 2015, J. Glaciol., 67, 331–342,
https://doi.org/10.1017/jog.2020.108, 2021. a
Dussaillant, I., Berthier, E., and Brun, F.: Geodetic mass balance of the
Northern Patagonian Icefield from 2000 to 2012 using two independent
methods, Front. Earth Sci., 6, 8, https://doi.org/10.3389/feart.2018.00008,
2018. a
Farinotti, D., Pistocchi, A., and Huss, M.: From dwindling ice to headwater
lakes: could dams replace glaciers in the European Alps?, Environ.
Res. Lett., 11, 054022, https://doi.org/10.1088/1748-9326/11/5/054022, 2016. a
Fischer, E. M. and Schär, C.: Consistent geographical patterns of changes
in high-impact European heatwaves, Nat. Geosci., 3, 398–403,
https://doi.org/10.1038/ngeo866, 2010. a
Fischer, E. M., Sippel, S., and Knutti, R.: Increasing probability of
record-shattering climate extremes, Nat. Clim. Change, 11, 689–695,
https://doi.org/10.1038/s41558-021-01092-9, 2021. a
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015. a, b, c
Fitzpatrick, N., Radić, V., and Menounos, B.: Surface energy balance
closure and turbulent flux parameterization on a mid-latitude mountain
glacier, Purcell Mountains, Canada, Front. Earth Sci., 5, 67,
https://doi.org/10.3389/feart.2017.00067, 2017. a
Fountain, A. G. and Vecchia, A.: How many stakes are required to measure the
mass balance of a glacier?, Geogr. Ann. A, 81, 563–573, https://doi.org/10.1111/1468-0459.00084, 1999. a
Friederichs, P.: Statistical downscaling of extreme precipitation events using
extreme value theory, Extremes, 13, 109–132,
https://doi.org/10.1007/s10687-010-0107-5, 2010. a
Friederichs, P., Wahl, S., and Buschow, S.: Postprocessing for extreme events,
in: Statistical Postprocessing of Ensemble Forecasts, Elsevier, 127–154,
https://doi.org/10.1016/B978-0-12-812372-0.00005-4, 2018. a
Geibel, L., Huss, M., Kurzböck, C., Hodel, E., Bauder, A., and Farinotti, D.: Rescue and homogenization of 140 years of glacier mass balance data in Switzerland, Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, 2022. a
GLAMOS: Swiss Glacier Mass Balance, release 2021, Glacier Monitoring
Switzerland [data set], https://doi.org/10.18750/massbalance.2020.r2021, 2021. a, b, c
GLAMOS: Swiss Glacier Mass Balance, release 2022, Glacier Monitoring
Switzerland [data set], https://doi.org/10.18750/massbalance.2022.r2022, 2022. a, b
Grab, M., Mattea, E., Bauder, A., Huss, M., Rabenstein, L., Hodel, E.,
Linsbauer, A., Langhammer, L., Schmid, L., Church, G., Hellmann, S.,
Délèze, K., Schaer, P., Lathion, P., Farinotti, D., and Maurer,
H.: Ice thickness distribution of all Swiss glaciers based on extended
ground-penetrating radar data and glaciological modeling, J.
Glaciol., 67, 1074–1092, https://doi.org/10.1017/jog.2021.55, 2021. a, b
Gugerli, R., Salzmann, N., Huss, M., and Desilets, D.: Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier, The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, 2019. a, b
Hashemi, N. S., Aghdam, R. B., Ghiasi, A. S. B., and Fatemi, P.: Template
matching advances and applications in image analysis, arXiv [preprint]
https://doi.org/10.48550/arXiv.1610.07231, 2016. a
Hock, R.: Glacier melt: a review of processes and their modelling, Prog.
Phys. Geogr., 29, 362–391, https://doi.org/10.1191/0309133305pp453ra, 2005. a
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M.,
Radić, V., and Slangen, A. B.: GlacierMIP – A model intercomparison of
global-scale glacier mass-balance models and projections, J.
Glaciol., 65, 453–467, https://doi.org/10.1017/jog.2019.22, 2019. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated
global glacier mass loss in the early twenty-first century, Nature, 592,
726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a, b
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012. a
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013. a, b
Huss, M. and Bauder, A.: 20th-century climate change inferred from four
long-term point observations of seasonal mass balance, Ann. Glaciol.,
50, 207–214, https://doi.org/10.3189/172756409787769645, 2009. a, b, c
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140,
https://doi.org/10.1038/s41558-017-0049-x, 2018. a
Huss, M., Bauder, A., Linsbauer, A., Gabbi, J., Kappenberger, G., Steinegger,
U., and Farinotti, D.: More than a century of direct glacier mass-balance
observations on Claridenfirn, Switzerland, J. Glaciol., 67,
697–713, https://doi.org/10.1017/jog.2021.22, 2021. a, b, c
Hutter, H.-P., Moshammer, H., Wallner, P., Leitner, B., and Kundi, M.:
Heatwaves in Vienna: effects on mortality, Wien. Klin. Wochenschr.,
119, 223–227, https://doi.org/10.1007/s00508-006-0742-7, 2007. a
Immerzeel, W. W., Van Beek, L. P., and Bierkens, M. F.: Climate change will
affect the Asian water towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010. a
Immerzeel, W. W., Lutz, A., Andrade, M., Bahl, A., Biemans, H., Bolch, T.,
Hyde, S., Brumby, S., Davies, B., Elmore, A., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A. Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and
vulnerability of the world’s water towers, Nature, 577, 364–369,
https://doi.org/10.1038/s41586-019-1822-y, 2020. a
Klug, C., Bollmann, E., Galos, S. P., Nicholson, L., Prinz, R., Rieg, L., Sailer, R., Stötter, J., and Kaser, G.: Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria, The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018, 2018. a
Kovats, R. S., Hajat, S., and Wilkinson, P.: Contrasting patterns of mortality
and hospital admissions during hot weather and heat waves in Greater
London, UK, Occup. Environ. Med., 61, 893–898,
https://doi.org/10.1136/oem.2003.012047, 2004. a, b
Kyselỳ, J.: Temporal fluctuations in heat waves at Prague–Klementinum,
the Czech Republic, from 1901–97, and their relationships to atmospheric
circulation, Int. J. Climatol., 22, 33–50, https://doi.org/10.1002/joc.720, 2002. a, b, c, d
Lliboutry, L.: Multivariate Statistical Analysis of Glacier Annual Balances,
J. Glaciol., 13, 371–392, https://doi.org/10.3189/S0022143000023169, 1974. a
Lowe, D. G.: Distinctive image features from scale-invariant keypoints,
Int. J. Comput. Vision, 60, 91–110,
https://doi.org/10.1023/B:VISI.0000029664.99615.94, 2004. a
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K.,
Huss, M., Immerzeel, W. W., Kraaijenbrink, P., Malles, J.-H., Maussion, F., Radić, V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R., and Zekollari, H.:
Partitioning the uncertainty of ensemble projections of global glacier mass
change, Earth's Future, 8, e2019EF001470, https://doi.org/10.1029/2019EF001470, 2020. a
Meteoswiss: Klimabulletin Jahr 2019, Tech. rep., Federal Office of
Meteorology and Climatology, MeteoSwiss, http://meteoswiss.admin.ch/services-and-publications/publications/reports-and-bulletins/2016/2020/klimabulletin-jahr-2019.html (last access: 24 April 2023), 2020. a
Mölg, N., Ceballos, J. L., Huggel, C., Micheletti, N., Rabatel, A., and
Zemp, M.: Ten years of monthly mass balance of Conejeras glacier,
Colombia, and their evaluation using different interpolation methods,
Geografiska Annaler: Series A, Phys. Geogr., 99, 155–176,
https://doi.org/10.1080/04353676.2017.1297678, 2017. a
Ohmura, A., Bauder, A., Müller, H., and Kappenberger, G.: Long-term change of
mass balance and the role of radiation, Ann. Glaciol., 46, 367–374,
https://doi.org/10.3189/172756407782871297, 2007. a
O'Neel, S., McNeil, C., Sass, L. C., Florentine, C., Baker, E. H., Peitzsch,
E., McGrath, D., Fountain, A. G., and Fagre, D.: Reanalysis of the US
Geological Survey Benchmark Glaciers: long-term insight into climate
forcing of glacier mass balance, J. Glaciol., 65, 850–866,
https://doi.org/10.1017/jog.2019.66, 2019. a
OpenCV: OpenCV: template matching,
https://docs.opencv.org/master/d4/dc6/tutorial_py_template_matching.html
(last access: 20 October 2020), 2022. a
Ostrem, G. and Stanley, A.: Glacier mass-balance measurements – A manual for
field and office work, Department of Energy, Mines and Resources, Ottawa,
Ontario; Norwegian Water Resources and Electricity Board, Oslo, https://snia.mop.gob.cl/repositoriodga/bitstream/handle/20.500.13000/2750/GLA1335.pdf?sequence=1 (last access: 24 April 2023), 1969. a, b
Parkes, D. and Marzeion, B.: Twentieth-century contribution to sea-level rise
from uncharted glaciers, Nature, 563, 551–554,
https://doi.org/10.1038/s41586-018-0687-9, 2018. a
Patro, E. R., De Michele, C., and Avanzi, F.: Future perspectives of
run-of-the-river hydropower and the impact of glaciers' shrinkage: The case
of Italian Alps, Appl. Energ., 231, 699–713,
https://doi.org/10.1016/j.apenergy.2018.09.063, 2018. a
Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and
Corripio, J.: An enhanced temperature-index glacier melt model including the
shortwave radiation balance: development and testing for Haut Glacier
d’Arolla, Switzerland, J. Glaciol., 51, 573–587,
https://doi.org/10.3189/172756505781829124, 2005. a
Pelto, M. S., Dryak, M., Pelto, J., Matthews, T., and Perry, L. B.:
Contribution of glacier runoff during heat waves in the Nooksack river basin
USA, Water, 14, 1145, https://doi.org/10.3390/w14071145, 2022. a
Schaefli, B., Manso, P., Fischer, M., Huss, M., and Farinotti, D.: The role of
glacier retreat for Swiss hydropower production, Renew. Energ., 132,
615–627, https://doi.org/10.1016/j.renene.2018.07.104, 2019. a
Sold, L., Huss, M., Machguth, H., Joerg, P. C., Leysinger Vieli, G., Linsbauer,
A., Salzmann, N., Zemp, M., and Hoelzle, M.: Mass balance re-analysis of
Findelengletscher, Switzerland; benefits of extensive snow accumulation
measurements, Front. Earth Sci., 4, 18,
https://doi.org/10.3389/feart.2016.00018, 2016. a, b
Stoffel, M. and Huggel, C.: Effects of climate change on mass movements in
mountain environments, Prog. Phys. Geogr., 36, 421–439,
https://doi.org/10.1177/0309133312441010, 2012. a
Terrier, S., Jordan, F., Schleiss, A., Haeberli, W., Huggel, C., and
Künzler, M.: Optimized and adapted hydropower management considering
glacier shrinkage scenarios in the Swiss Alps, in: Proc. of International
Symposium on Dams and Reservoirs under Changing Challenges, 79th Annual
Meeting of ICOLD – Swiss Committee on Dams, CRC Press, Taylor
& Francis Group, 497–508, ISBN 978-0-415-68267-1, 2011. a
Thibert, E., Eckert, N., and Vincent, C.: Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps), The Cryosphere, 7, 47–66, https://doi.org/10.5194/tc-7-47-2013, 2013. a
Thibert, E., Dkengne Sielenou, P., Vionnet, V., Eckert, N., and Vincent, C.:
Causes of glacier melt extremes in the Alps since 1949, Geophys.
Res. Lett., 45, 817–825, https://doi.org/10.1002/2017GL076333, 2018. a
Trewin, B., Cazenave, A., Howell, S., Huss, M., Isensee, K., Palmer, M. D.,
Tarasova, O., and Vermeulen, A.: Headline indicators for global climate
monitoring, B. Am. Meteorol. Soc., 102, E20–E37,
https://doi.org/10.1175/BAMS-D-19-0196.1, 2021. a
Ultee, L., Coats, S., and Mackay, J.: Glacial runoff buffers droughts through the 21st century, Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, 2022. a
Van Tiel, M., Van Loon, A. F., Seibert, J., and Stahl, K.: Hydrological response to warm and dry weather: do glaciers compensate?, Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, 2021. a
Vincent, C., Fischer, A., Mayer, C., Bauder, A., Galos, S. P., Funk, M.,
Thibert, E., Six, D., Braun, L., and Huss, M.: Common climatic signal from
glaciers in the European Alps over the last 50 years, Geophys.
Res. Lett., 44, 1376–1383, https://doi.org/10.1002/2016GL072094, 2017. a
Vincent, C., Soruco, A., Azam, M., Basantes-Serrano, R., Jackson, M.,
Kjøllmoen, B., Thibert, E., Wagnon, P., Six, D., Rabatel, A., Ramanathan, A., Berthier, E., Cusicanqui, D., Vincent, P., and Mandal, A.: A
nonlinear statistical model for extracting a climatic signal from glacier
mass balance measurements, J. Geophys. Res.-Earth,
123, 2228–2242, https://doi.org/10.1029/2018JF004702, 2018. a
Vincent, C., Cusicanqui, D., Jourdain, B., Laarman, O., Six, D., Gilbert, A., Walpersdorf, A., Rabatel, A., Piard, L., Gimbert, F., Gagliardini, O., Peyaud, V., Arnaud, L., Thibert, E., Brun, F., and Nanni, U.: Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements, The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, 2021. a
Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B., and Tong, S.: Impact of
heatwave on mortality under different heatwave definitions: a systematic
review and meta-analysis, Environ. Int., 89, 193–203,
https://doi.org/10.1016/j.envint.2016.02.007, 2016. a
Zappa, M. and Kan, C.: Extreme heat and runoff extremes in the Swiss Alps, Nat. Hazards Earth Syst. Sci., 7, 375–389, https://doi.org/10.5194/nhess-7-375-2007, 2007. a
Zeller, L., McGrath, D., Sass, L., O'Neel, S., McNeil, C., and Baker, E.:
Beyond glacier-wide mass balances: parsing seasonal elevation change into
spatially resolved patterns of accumulation and ablation at Wolverine
Glacier, Alaska, J. Glaciol., 69, 87–102,
https://doi.org/10.1017/jog.2022.46, 2022. a
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance
observations: a review of the worldwide monitoring network, Ann.
Glaciol., 50, 101–111, https://doi.org/10.3189/172756409787769591, 2009. a, b
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013. a
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Ove Hagen, J., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.:
Historically unprecedented global glacier decline in the early 21st century,
J. Glaciol., 61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global
glacier mass changes and their contributions to sea-level rise from 1961 to
2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer...