Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1853-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1853-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling
Felicity A. Holmes
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Eef van Dongen
Department of Meteorology, Stockholm University, Stockholm, Sweden
Riko Noormets
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Svalbard, Norway
Michał Pętlicki
Faculty of Geography and Geology, Jagiellonian University, Cracow, Poland
Nina Kirchner
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Related authors
Jamie Barnett, Felicity A. Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 3631–3653, https://doi.org/10.5194/tc-19-3631-2025, https://doi.org/10.5194/tc-19-3631-2025, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12 000 years we find that both a warming atmosphere and the ocean play a key role in the evolution of the glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean is required to predict future changes and reliable sea level rise estimates.
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025, https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades, in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low- and a high-emissions scenario. Very high levels of surface melt under a high-emissions future lead to a sea level rise contribution that is an order of magnitude higher than under a low-emissions future.
Jamie Barnett, Felicity A. Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 3631–3653, https://doi.org/10.5194/tc-19-3631-2025, https://doi.org/10.5194/tc-19-3631-2025, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12 000 years we find that both a warming atmosphere and the ocean play a key role in the evolution of the glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean is required to predict future changes and reliable sea level rise estimates.
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025, https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades, in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low- and a high-emissions scenario. Very high levels of surface melt under a high-emissions future lead to a sea level rise contribution that is an order of magnitude higher than under a low-emissions future.
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023, https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10, https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The terminus of San Quintín glacier, the largest of the Northern Patagonia Icefield in southern Chile, is rapidly disintegrating with large tabular icebergs into a proglacial lake left behind by this retreating glacier. We show that the ongoing retreat is caused by recent detachment of a floating terminus from the glacier bed. This process may lead to the disappearance of the last existing piedmont lobe in Patagonia, and one of the few remaining glaciers of this type in the world.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742, https://doi.org/10.5194/tc-15-715-2021, https://doi.org/10.5194/tc-15-715-2021, 2021
Short summary
Short summary
We present an inverse modeling approach to improve the understanding of spatiotemporally variable processes at the inaccessible base of an ice sheet by determining the sensitivity of direct surface observations to perturbations of basal conditions. Time dependency is proved to be important in these types of problems. The effect of perturbations is analyzed based on analytical and numerical solutions.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Cited articles
Amundson, J. M., Truffer, M., and Zwinger, T.: Tidewater glacier response to
individual calving events, J. Glaciol., 68, 1117–1126,
https://doi.org/10.1017/JOG.2022.26, 2022. a, b, c, d
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts
viewed as an inverse Robin problem, J. Glaciol., 56, 527–533,
https://doi.org/10.3189/002214310792447699, 2010. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel,
S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen,
J., and Moore, J. C.: Termini of calving glaciers as self-organized critical
systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Bartholomaus, T. C., Larsen, C. F., West, M. E., O'Neel, S., Pettit, E. C., and
Truffer, M.: Tidal and seasonal variations in calving flux observed with
passive seismology, J. Geophys. Res.-Earth, 120,
2318–2337, https://doi.org/10.1002/2015JF003641, 2015. a, b
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179,
https://doi.org/10.1016/J.EARSCIREV.2007.02.002, 2007. a, b
Berg, B. and Bassis, J.: Crevasse advection increases glacier calving,
J. Glaciol., 68, 977–986, https://doi.org/10.1017/JOG.2022.10, 2022. a
Błaszczyk, M., Jania, J., and Res, J. H.: Tidewater glaciers of Svalbard:
Recent changes and estimates of calving fluxes, Pol. Polar Res., 30,
85–142, https://journals.pan.pl/dlibra/publication/126668/edition/110542/content (last access: 2 May 2023),
2009. a
Braun, M., Pohjola, V. A., Pettersson, R., Möller, M., Finkelnburg, R.,
Falk, U., Scherer, D., and Schneider, C.: Changes of glacier frontal
positions of vestfonna (nordaustlandet, svalbard), Geogr. Ann. A,
93, 301–310,
https://doi.org/10.1111/J.1468-0459.2011.00437.X, 2016. a
Christmann, J., Plate, C., Müller, R., and Humbert, A.: Viscous and
viscoelastic stress states at the calving front of Antarctic ice shelves,
Ann. Glaciol., 57, 10–18, https://doi.org/10.1017/AOG.2016.18, 2016. a
Christmann, J., Helm, V., Khan, S. A., Kleiner, T., Müller, R.,
Morlighem, M., Neckel, N., Rückamp, M., Steinhage, D., Zeising, O., and
Humbert, A.: Elastic deformation plays a non-negligible role in
Greenland’s outlet glacier flow, Communications Earth & Environment
2, 1–12, https://doi.org/10.1038/s43247-021-00296-3, 2021. a
Christoffersen, P., Mugford, R. I., Heywood, K. J., Joughin, I., Dowdeswell, J. A., Syvitski, J. P. M., Luckman, A., and Benham, T. J.: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions, The Cryosphere, 5, 701–714, https://doi.org/10.5194/tc-5-701-2011, 2011. a, b
Cokelet, E. D., Tervalon, N., and Bellingham, J. G.: Hydrography of the West
Spitsbergen Current, Svalbard Branch: Autumn 2001, J. Geophys.
Res., 113, C01006, https://doi.org/10.1029/2007JC004150, 2008. a
Cook, S., Zwinger, T., Rutt, I. C., O'Neel, S., and Murray, T.: Testing the
effect of water in crevasses on a physically based calving model, Ann.
Glaciol., 53, 90–96, https://doi.org/10.3189/2012AOG60A107, 2012. a, b
Cook, S. J., Christoffersen, P., Todd, J., Slater, D., and Chauché, N.: Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland , The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, 2020. a, b
Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., and Griffiths,
C.: Water mass modification in an Arctic fjord through cross-shelf exchange:
The seasonal hydrography of Kongsfjorden, Svalbard, J. Geophys. Res., 110, C12005,
https://doi.org/10.1029/2004JC002757, 2005. a
Deschamps-Berger, C., Nuth, C., Van Pelt, W., Berthier, E., Kohler, J., and
Altena, B.: Closing the mass budget of a tidewater glacier: the example of
Kronebreen, Svalbard, J. Glaciol., 65, 136–148,
https://doi.org/10.1017/JOG.2018.98, 2019. a
Dunse, T., Schuler, T. V., Hagen, J. O., and Reijmer, C. H.: Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements, The Cryosphere, 6, 453–466, https://doi.org/10.5194/tc-6-453-2012, 2012. a
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M. J., Van Angelen, J. H., and
Van Den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
Fried, M. J., Catania, G. A., Bartholomaus, T. C., Duncan, D., Davis, M.,
Stearns, L. A., Nash, J., Shroyer, E., and Sutherland, D.: Distributed
subglacial discharge drives significant submarine melt at a Greenland
tidewater glacier, Geophys. Res. Lett., 42, 9328–9336,
https://doi.org/10.1002/2015GL065806, 2015. a, b
Gagliardini, O., Cohen, D., Råback, P., and Zwinger, T.: Finite-element
modeling of subglacial cavities and related friction law, J.
Geophys. Res.-Earth, 112, 2027, https://doi.org/10.1029/2006JF000576,
2007. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013 (code available at: https://github.com/ElmerCSC/elmerfem, last access: February 2022). a, b
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a, b
Hansen, P. C.: The L-curve and its use in the numerical treatment of inverse
problems, in: Computational inverse problems in electrocardiology, WIT Press,
119–142, ISBN 978-1-85312-614-7, 2001. a
Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008. a
Holmes, F. A., Kirchner, N., Kuttenkeuler, J., Krützfeldt, J., and
Noormets, R.: Relating ocean temperatures to frontal ablation rates at
Svalbard tidewater glaciers: Insights from glacier proximal datasets,
Scientific Reports, 9, 9442, https://doi.org/10.1038/s41598-019-45077-3, 2019. a, b, c, d, e, f, g, h, i, j
Holmes, F. A., Kirchner, N., Prakash, A., Stranne, C., Dijkstra, S., and
Jakobsson, M.: Calving at Ryder Glacier, Northern Greenland, J.
Geophys. Res.-Earth, 126, e2020JF005872,
https://doi.org/10.1029/2020JF005872, 2021. a
How, P., Schild, K. M., Benn, D. I., Noormets, R., Kirchner, N., Luckman, A.,
Vallot, D., Hulton, N. R. J., and Borstad, C.: Calving controlled by
melt-under-cutting: detailed calving styles revealed through time-lapse
observations, Ann. Glaciol., 60, 20–31, https://doi.org/10.1017/aog.2018.28,
2019. a, b
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 9781009157964, https://doi.org/10.1017/9781009157964, 2022. a
Jakobsson, M., Mayer, L. A., Nilsson, J., Stranne, C., Calder, B., O’Regan,
M., Farrell, J. W., Cronin, T. M., Brüchert, V., Chawarski, J.,
Eriksson, B., Fredriksson, J., Gemery, L., Glueder, A., Holmes, F. A.,
Jerram, K., Kirchner, N., Mix, A., Muchowski, J., Prakash, A., Reilly, B.,
Thornton, B., Ulfsbo, A., Weidner, E., Åkesson, H., Handl, T., Ståhl,
E., Boze, L.-G., Reed, S., West, G., and Padman, J.: Ryder Glacier in
northwest Greenland is shielded from warm Atlantic water by a bathymetric
sill, Communications Earth & Environment, 1, 45,
https://doi.org/10.1038/s43247-020-00043-0, 2020. a
Jenkins, A.: Convection-Driven Melting near the Grounding Lines of Ice Shelves
and Tidewater Glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011. a
Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction
Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 46, 4764–4771, https://doi.org/10.1029/2019GL082526,
2019. a
Karlsson, N. B., Solgaard, A. M., Mankoff, K. D., Gillet-Chaulet, F.,
MacGregor, J. A., Box, J. E., Citterio, M., Colgan, W. T., Larsen, S. H.,
Kjeldsen, K. K., Korsgaard, N. J., Benn, D. I., Hewitt, I. J., and Fausto,
R. S.: A first constraint on basal melt-water production of the Greenland
ice sheet, Nat. Commun., 12, 3461,
https://doi.org/10.1038/s41467-021-23739-z, 2021. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Communications Earth & Environment, 1, 1,
https://doi.org/10.1038/s43247-020-0001-2, 2020. a, b
Köhler, A., Pętlicki, M., Lefeuvre, P.-M., Buscaino, G., Nuth, C., and Weidle, C.: Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements, The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, 2019. a, b
Le clec'h, S., Quiquet, A., Charbit, S., Dumas, C., Kageyama, M., and Ritz, C.: A rapidly converging initialisation method to simulate the present-day Greenland ice sheet using the GRISLI ice sheet model (version 1.3), Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, 2019. a
Lindbäck, K., Kohler, J., Pettersson, R., Nuth, C., Langley, K., Messerli, A., Vallot, D., Matsuoka, K., and Brandt, O.: Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard, Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, 2018. a
Mosbeux, C., Wagner, T. J., Becker, M. K., and Fricker, H. A.: Viscous and
elastic buoyancy stresses as drivers of ice-shelf calving, J.
Glaciol., 66, 643–657, https://doi.org/10.1017/JOG.2020.35, 2020. a
Nilsen, F., Cottier, F., Skogseth, R., and Mattsson, S.: Fjord-shelf
exchanges controlled by ice and brine production: The interannual variation
of Atlantic Water in Isfjorden, Svalbard, Cont. Shelf Res., 28,
1838–1853, https://doi.org/10.1016/J.CSR.2008.04.015, 2008. a
Noël, B. P. Y., Jakobs, C. L., van Pelt, W., Lhermitte, S., Wouters, B.,
Kohler, J., Hagen, J. O., Luks, B., Reijmer, C., van de Berg, W. J., and
van den Broeke, M. R.: Annual surface mass balance (SMB) and components of
Svalbard glaciers statistically downscaled to 500 m spatial resolution
(1958–2018), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.920984,
2020. a, b
Noormets, R., Pętlicki, M., and Kirchner, N.: Subaerial and submarine frontal morphology of Kronebreen, Svalbard, 24 August 2016, Bolin Centre Database [data set], https://doi.org/10.17043/noormets-2022-kronebreen-1, 2022. a
Norwegian Mapping Authority: Homepage, https://kartverket.no, last access: February 2022. a
O'Neel, S., Echelmeyer, K. A., and Motyka, R. J.: Short-term variations in
calving of a tidewater glacier: LeConte Glacier, Alaska, U.S.A., J.
Glaciol., 49, 587–598, https://doi.org/10.3189/172756503781830430, 2003. a, b
Podrasky, D., Truffer, M., Lüthi, M., and Fahnestock, M.: Quantifying
velocity response to ocean tides and calving near the terminus of Jakobshavn
Isbræ, Greenland, J. Glaciol., 60, 609–621,
https://doi.org/10.3189/2014JOG13J130, 2014. a
Prasanna, M., Polojärvi, A., Wei, M., and Åström, J.: Modeling
ice block failure within drift ice and ice rubble, Phys. Rev. E, 105,
045001, https://doi.org/10.1103/PHYSREVE.105.045001, 2022. a
Price, S. F., Payne, A. J., Howat, I. M., and Smith, B. E.: Committed
sea-level rise for the next century from Greenland ice sheet dynamics during
the past decade., P. Natl. Acad. Sci.
USA, 108, 8978–83, https://doi.org/10.1073/pnas.1017313108, 2011. a
Promińska, A., Cisek, M., and Walczowski, W.: Kongsfjorden and Hornsund
hydrography – comparative study based on a multiyear survey in fjords of
west Spitsbergen, Oceanologia, 59, 397–412,
https://doi.org/10.1016/J.OCEANO.2017.07.003, 2017. a
Reeh, N., Christensen, E. L., Mayer, C., and Olesen, O. B.: Tidal bending of
glaciers: a linear viscoelastic approach, Ann. Glaciol., 37, 83–89,
https://doi.org/10.3189/172756403781815663, 2003. a
Rignot, E. and Kanagaratnam, P.: Changes in the Velocity Structure of the
Greenland Ice Sheet, Science, 311, 986–990, https://doi.org/10.1126/SCIENCE.1121381,
2006. a
Rignot, E., Fenty, I., Xu, Y., Cai, C., and Kemp, C.: Undercutting of
marine-terminating glaciers in West Greenland, Geophys. Res. Lett.,
42, 5909–5917, https://doi.org/10.1002/2015GL064236, 2015. a
Sato, T. and Greve, R.: Sensitivity experiments for the Antarctic ice sheet
with varied sub-ice-shelf melting rates, Ann. Glaciol., 53, 221–228,
https://doi.org/10.3189/2012AOG60A042, 2012. a
Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking, The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, 2015. a, b, c
Schoof, C.: The effect of cavitation on glacier sliding, P.
Roy. Soc. A-Math. Phy., 461,
609–627, https://doi.org/10.1098/RSPA.2004.1350, 2005. a
Schuler, T. V., Kohler, J., Elagina, N., Hagen, J. O. M., Hodson, A. J., Jania,
J. A., Kääb, A. M., Luks, B., Małecki, J., Moholdt, G.,
Pohjola, V. A., Sobota, I., and Van Pelt, W. J.: Reconciling Svalbard
Glacier Mass Balance, Front. Earth Sci., 8,
https://doi.org/10.3389/feart.2020.00156, 2020. a, b
Seddik, H., Greve, R., Zwinger, T., Gillet-Chaulet, F., and Gagliardini, O.:
Simulations of the Greenland ice sheet 100 years into the future with the
full Stokes model Elmer/Ice, J. Glaciol., 58, 427–440,
https://doi.org/10.3189/2012JOG11J177, 2012. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm, A.,
Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather,
R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A.,
Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath,
A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P.,
Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild,
S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler,
T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier,
W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen,
I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K. W.,
Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L.,
Van De Berg, W. J., Van Der Wal, W., Van Wessem, M., Vishwakarma, B. D.,
Wiese, D., and Wouters, B.: Mass balance of the Antarctic Ice Sheet from
1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a, b, c
Slater, D. A., Nienow, P. W., Goldberg, D. N., Cowton, T. R., and Sole, A. J.:
A model for tidewater glacier undercutting by submarine melting,
Geophys. Res. Lett., 44, 2360–2368, https://doi.org/10.1002/2016GL072374,
2017. a
Slater, D. A., Benn, D. I., Cowton, T. R., Bassis, J. N., and Todd, J. A.:
Calving Multiplier Effect Controlled by Melt Undercut Geometry, J.
Geophys. Res.-Earth, 126, e2021JF006191,
https://doi.org/10.1029/2021JF006191, 2021. a
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., and Werner, C. L.:
Glacier Motion Estimation Using SAR Offset-Tracking Procedures, IEEE
T. Geosci. Remote, 40, 2384–2391,
https://doi.org/10.1109/TGRS.2002.805079, 2002. a
Sundfjord, A., Albretsen, J., Kasajima, Y., Skogseth, R., Kohler, J., Nuth, C.,
Skarðhamar, J., Cottier, F., Nilsen, F., Asplin, L., Gerland, S., and
Torsvik, T.: Effects of glacier runoff and wind on surface layer dynamics
and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study,
Estuarine, Coastal and Shelf Science, 187, 260–272,
https://doi.org/10.1016/J.ECSS.2017.01.015, 2017. a
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B.,
Tverberg, V., Gerland, S., Ørbøk, J. B., Bischof, K., Papucci, C.,
Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., and
Dallmann, W.: The physical environment of Kongsfjorden-Krossfjorden, an
Arctic fjord system in Svalbard, Polar Res., 21, 133–166,
https://doi.org/10.3402/polar.v21i1.6479, 2002. a, b
Todd, J. and Christoffersen, P.: Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland, The Cryosphere, 8, 2353–2365, https://doi.org/10.5194/tc-8-2353-2014, 2014. a
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., Chauché, N.,
Benn, D., Luckman, A., Ryan, J., Toberg, N., Slater, D., and Hubbard, A.: A
Full-Stokes 3-D Calving Model Applied to a Large Greenlandic Glacier,
J. Geophys. Res.-Earth, 123, 410–432,
https://doi.org/10.1002/2017JF004349, 2018. a, b, c, d, e, f, g, h, i, j, k
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., and Benn, D. I.: Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model, The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, 2019. a, b
Trusel, L. D., Powell, R. D., Cumpston, R. M., and Brigham-Grette, J.: Modern
glacimarine processes and potential future behaviour of Kronebreen and
Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard,
Geological Society, London, Special Publications, 344, 89–102,
https://doi.org/10.1144/SP344.9, 2010. a
Vallot, D., Pettersson, R., Luckman, A., Benn, D. I., Zwinger, T., Van Pelt, W.
J. J., Kohler, J., Schäfer, M., Claremar, B., and Hulton, N. R. J.:
Basal dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard:
non-local spatio-temporal response to water input, J. Glaciol.,
63, 1012–1024, https://doi.org/10.1017/jog.2017.69, 2017. a, b, c, d, e
Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn, D. I., Luckman, A., van Pelt, W. J. J., Nick, F., and Kohler, J.: Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard, The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, 2018. a, b, c, d, e, f
Van Dongen, E., Jouvet, G., Walter, A., Todd, J., Zwinger, T., Asaji, I.,
Sugiyama, S., Walter, F., and Funk, M.: Tides modulate crevasse opening
prior to a major calving event at Bowdoin Glacier, Northwest Greenland,
J. Glaciol., 66, 113–123, https://doi.org/10.1017/JOG.2019.89, 2020. a, b
Vaňková, I. and Holland, D. M.: Calving Signature in Ocean Waves at
Helheim Glacier and Sermilik Fjord, East Greenland, J. Phys.
Oceanogr., 46, 2925–2941, https://doi.org/10.1175/JPO-D-15-0236.1, 2016.
a
van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pohjola, V. A., Pettersson, R., and van Angelen, J. H.: Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model, The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012, 2012. a
van Pelt, W. J. J., Pohjola, V. A., and Reijmer, C. H.: The Changing Impact of
Snow Conditions and Refreezing on the Mass Balance of an Idealized Svalbard
Glacier, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00102,
2016. a
Voytenko, D., Stern, A., Holland, D. M., Dixon, T. H., Christianson, K., and
Walker, R. T.: Tidally driven ice speed variation at Helheim Glacier,
Greenland, observed with terrestrial radar interferometry, J.
Glaciol., 61, 301–308, https://doi.org/10.3189/2015JOG14J173, 2015. a
Waiters, R. A. and Survey, U. S. G.: Small-Amplitude, Short-Period Variations
in the Speed of a Tide-Water Glacier in South-Central Alaska, U.S.A., Ann. Glaciol., 12, 187–191, https://doi.org/10.3189/S0260305500007175, 1989. a
Walters, R. A.: Small-Amplitude, Short-Period Variations in the Speed of a
Tide-Water Glacier in South-Central Alaska, U.S.A., Ann. Glaciol.,
12, 187–191, https://doi.org/10.3189/S0260305500007175, 1989. a
Walters, R. A. and Dunlap, W. W.: Analysis of time series of glacier speed:
Columbia Glacier, Alaska, J. Geophys. Res.-Sol. Ea., 92,
8969–8975, https://doi.org/10.1029/JB092IB09P08969, 1987. a
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice Shelf,
J. Glaciol., 13, 3–11, https://doi.org/10.3189/S0022143000023327, 1974. a
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well...