Articles | Volume 17, issue 5
https://doi.org/10.5194/tc-17-1853-2023
https://doi.org/10.5194/tc-17-1853-2023
Research article
 | 
05 May 2023
Research article |  | 05 May 2023

Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling

Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner

Related authors

High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024,https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023,https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023,https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Frontal collapse of San Quintín glacier (Northern Patagonia Icefield), the last piedmont glacier lobe in the Andes
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10,https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review
Short summary
Climate change in the Baltic Sea region: a summary
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022,https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary

Related subject area

Discipline: Glaciers | Subject: Glaciers
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023,https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023,https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Everest South Col Glacier did not thin during the period 1984–2017
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023,https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023,https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023,https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary

Cited articles

Amundson, J. M., Truffer, M., and Zwinger, T.: Tidewater glacier response to individual calving events, J. Glaciol., 68, 1117–1126, https://doi.org/10.1017/JOG.2022.26, 2022. a, b, c, d
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, https://doi.org/10.3189/002214310792447699, 2010. a
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Bartholomaus, T. C., Larsen, C. F., West, M. E., O'Neel, S., Pettit, E. C., and Truffer, M.: Tidal and seasonal variations in calving flux observed with passive seismology, J. Geophys. Res.-Earth, 120, 2318–2337, https://doi.org/10.1002/2015JF003641, 2015. a, b
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/J.EARSCIREV.2007.02.002, 2007. a, b
Download
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.