Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1609-2023
https://doi.org/10.5194/tc-17-1609-2023
Research article
 | 
13 Apr 2023
Research article |  | 13 Apr 2023

First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska

Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders

Related authors

The Radiative and Geometric Properties of Melting First-Year Sea Ice
Nathan J. M. Laxague, Christopher J. Zappa, Andrew Richard Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate Elyse Turner, and Alex Whiting
EGUsphere, https://doi.org/10.22541/essoar.168500347.79506486/v1,https://doi.org/10.22541/essoar.168500347.79506486/v1, 2023
Short summary
Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635, https://doi.org/10.5194/tc-16-4617-2022,https://doi.org/10.5194/tc-16-4617-2022, 2022
Short summary
Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395–1408, https://doi.org/10.5194/tc-13-1395-2019,https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary
A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246, https://doi.org/10.5194/tc-13-1233-2019,https://doi.org/10.5194/tc-13-1233-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023,https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago: 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2023-2366,https://doi.org/10.5194/egusphere-2023-2366, 2023
Short summary
MMSeaIce: Multi-task Mapping of Sea Ice Parameters from AI4Arctic Sea Ice Challenge Dataset
Xinwei Chen, Muhammed Patel, Fernando Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1297,https://doi.org/10.5194/egusphere-2023-1297, 2023
Short summary
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary

Cited articles

Ardhuin, F., Collard, F., Chapron, B., Girard-Ardhuin, F., Guitton, G., Mouche, A., and Stopa, J. E.: Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A, Geophys. Res. Lett., 42, 2317–2325, https://doi.org/10.1002/2014GL062940, 2015. 
Ardhuin, F., Stopa, J., Chapron, B., Collard, F., Smith, M., Thomson, J., Doble, M., Blomquist, B., Persson, O., and Collins III, C. O.: Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data, Remote Sens. Environ., 189, 211–222, https://doi.org/10.1016/j.rse.2016.11.024, 2017. 
Bromirski, P. D., Sergienko, O. V., and MacAyeal, D. R.: Transoceanic infragravity waves impacting Antarctic ice shelves, Geophys. Res. Lett., 37, L02502, https://doi.org/10.1029/2009GL041488, 2010. 
Bromirski, P. D., Diez, A., Gerstoft, P., Stephen, R. A., Bolmer, T., Wiens, D., Aster, R., and Nyblade, A.: Ross ice shelf vibrations, Geophys. Res. Lett., 42, 7589–7597, https://doi.org/10.1002/2015GL065284, 2015. 
Collard, F., Marié, L., Nouguier, F., Kleinherenbrink, M., Ehlers, F., and Ardhuin, F.: Wind-Wave Attenuation in Arctic Sea Ice: A Discussion of Remote Sensing Capabilities, J. Geophys. Res.-Oceans, 127, e2022JC018654, https://doi.org/10.1029/2022JC018654, 2022. 
Download
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.