Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1585-2023
https://doi.org/10.5194/tc-17-1585-2023
Research article
 | 
12 Apr 2023
Research article |  | 12 Apr 2023

Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response

Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb

Related authors

Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-851,https://doi.org/10.5194/egusphere-2024-851, 2024
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM version 2.0) – part 1: description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-5,https://doi.org/10.5194/gmd-2024-5, 2024
Preprint under review for GMD
Short summary
Miocene Antarctic Ice Sheet area adapts significantly faster than volume to CO2-induced climate change
Lennert B. Stap, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 257–266, https://doi.org/10.5194/cp-20-257-2024,https://doi.org/10.5194/cp-20-257-2024, 2024
Short summary
Late Pleistocene glacial terminations accelerated by proglacial lakes
Meike Scherrenberg, Constantijn Berends, and Roderik van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-42,https://doi.org/10.5194/cp-2023-42, 2023
Preprint under review for CP
Short summary
Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle
Meike D. W. Scherrenberg, Constantijn J. Berends, Lennert B. Stap, and Roderik S. W. van de Wal
Clim. Past, 19, 399–418, https://doi.org/10.5194/cp-19-399-2023,https://doi.org/10.5194/cp-19-399-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Subglacial Processes
Improved monitoring of subglacial lake activity in Greenland
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024,https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling
Koi McArthur, Felicity S. McCormack, and Christine F. Dow
The Cryosphere, 17, 4705–4727, https://doi.org/10.5194/tc-17-4705-2023,https://doi.org/10.5194/tc-17-4705-2023, 2023
Short summary
Mapping age and basal conditions of ice in the Dome Fuji region, Antarctica, by combining radar internal layer stratigraphy and flow modeling
Zhuo Wang, Ailsa Chung, Daniel Steinhage, Frédéric Parrenin, Johannes Freitag, and Olaf Eisen
The Cryosphere, 17, 4297–4314, https://doi.org/10.5194/tc-17-4297-2023,https://doi.org/10.5194/tc-17-4297-2023, 2023
Short summary
Towards modelling of corrugation ridges at ice-sheet grounding lines
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023,https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Drainage and refill of an Antarctic Peninsula subglacial lake reveal an active subglacial hydrological network
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022,https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary

Cited articles

Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing, The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, 2020. 
Alley, R. B.: The Younger Dryas cold interval as viewed from central Greenland, Quaternary Sci. Rev., 19, 213–226, 2000. 
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, 2010. 
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188, 2015. 
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. 
Download
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock. Inversion methods attempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.