Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1389-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1389-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Zhaoqing Dong
College of Oceanography, Hohai University, Nanjing, 210003, China
National Satellite Ocean Application Service, Beijing, 100081, China
Lijian Shi
CORRESPONDING AUTHOR
National Satellite Ocean Application Service, Beijing, 100081, China
Key Laboratory of Space Ocean Remote Sensing and Application (MNR), Ministry of Natural Resources,
Beijing, 100081, China
Mingsen Lin
National Satellite Ocean Application Service, Beijing, 100081, China
Key Laboratory of Space Ocean Remote Sensing and Application (MNR), Ministry of Natural Resources,
Beijing, 100081, China
Yongjun Jia
National Satellite Ocean Application Service, Beijing, 100081, China
Key Laboratory of Space Ocean Remote Sensing and Application (MNR), Ministry of Natural Resources,
Beijing, 100081, China
Tao Zeng
National Satellite Ocean Application Service, Beijing, 100081, China
Key Laboratory of Space Ocean Remote Sensing and Application (MNR), Ministry of Natural Resources,
Beijing, 100081, China
Suhui Wu
National Satellite Ocean Application Service, Beijing, 100081, China
Related authors
No articles found.
Mingtao Liu, Jinyun Guo, Yu Sun, Shaofeng Bian, Yongjun Jia, and Xin Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4935, https://doi.org/10.5194/egusphere-2025-4935, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Sea ice is vital in the global climate system, ecological balance and polar navigation. Arctic sea ice concentration (SIC) exhibits significant spatial heterogeneity and complex evolutionary patterns. In response to address these challenges, this study proposes a predictive model named sea ice concentration U-Net (SICUNet). SICUNet is a data-driven U-Net model that integrates attention mechanisms and residual structures for short-term prediction of SIC in the Arctic region.
Yong Wang, Shengjun Zhang, and Yongjun Jia
Ocean Sci., 21, 931–944, https://doi.org/10.5194/os-21-931-2025, https://doi.org/10.5194/os-21-931-2025, 2025
Short summary
Short summary
The distance-weighted averaging method was used to calculate the along-orbit sea surface height (SSH) wavenumber spectra of four satellites and to evaluate the along-track resolution capability of the four satellites. The results show that the resolution of Surface Water and Ocean Topography (SWOT) in the Kuroshio region is 25 km, which is twice the resolution of conventional satellites. A parameter was defined using the cross-power-spectrum approach and used to analyse the global ocean.
Shengjun Zhang, Xu Chen, Runsheng Zhou, and Yongjun Jia
Geosci. Model Dev., 18, 1221–1239, https://doi.org/10.5194/gmd-18-1221-2025, https://doi.org/10.5194/gmd-18-1221-2025, 2025
Short summary
Short summary
NSOAS24, a new global marine gravity model derived from multi-satellite altimetry missions, represents a significant advancement over its predecessor, NSOAS22. Through optimized processing procedures, NSOAS24 resolves previous issues and demonstrates improved accuracy. Compared to NSOAS22, NSOAS24 shows a reduction of approximately 0.7 mGal in standard deviation when validated against recent shipborne data. Notably, its accuracy now rivals internationally recognized models DTU21 and V32.1.
Shuai Zhou, Jinyun Guo, Huiying Zhang, Yongjun Jia, Heping Sun, Xin Liu, and Dechao An
Earth Syst. Sci. Data, 17, 165–179, https://doi.org/10.5194/essd-17-165-2025, https://doi.org/10.5194/essd-17-165-2025, 2025
Short summary
Short summary
Our research focuses on using machine learning to enhance the accuracy and efficiency of bathymetric models. In this paper, a multi-layer perceptron (MLP) neural network is used to integrate multi-source marine geodetic data. And a new bathymetric model of the global ocean, spanning 0–360° E and 80° S–80° N, known as the Shandong University of Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO), has been constructed, with a grid size of 1′ × 1′.
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024, https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Short summary
We retrieved sea ice drift in Fram Strait using the Chinese HaiYang 1D Coastal Zone Imager. The dataset is has hourly and daily intervals for analysis, and validation is performed using a synthetic aperture radar (SAR)-based product and International Arctic Buoy Programme (IABP) buoys. The differences between them are explained by investigating the spatiotemporal variability in sea ice motion. The accuracy of flow direction retrieval for sea ice drift is also related to sea ice displacement.
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024, https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Short summary
Seafloor topography, as fundamental geoinformation in marine surveying and mapping, plays a crucial role in numerous scientific studies. In this paper, we focus on constructing a high-precision seafloor topography and bathymetry model for the Philippine Sea (5° N–35° N, 120° E–150° E), based on shipborne bathymetric data and marine gravity anomalies, and evaluate the reliability of the model's accuracy.
Cited articles
Aaboe, S., Down, E., and Eastwood, S.: Global Sea Ice Edge (OSI-402-d) and
Type (OSI-403-d) Validation Report, v3.1, in: SAF/OSI/CDOP3/MET-Norway/SCI/RP/224, EUMETSAT OSISAF–Ocean and Sea Ice
Satellite Application Facility, 2021.
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Andersen, O. B., Knudsen, P., and Stenseng, L.: A New DTU18 MSS Mean Sea
Surface – Improvement from SAR Altimetry, 172, in: Proceedings of the 25
years of progress in radar altimetry symposium, Ponta Delgada, São
Miguel Island, Portugal, 24–29 September 2018, edited by: Benveniste, J. and Bonnefond, F.,
Azores Archipelago, Portugal, 172, 24–26, https://orbit.dtu.dk/en/publications/a-new-dtu18-mss-mean-sea-surface-improvement-from-sar-altimetry (last access: 30 June 2022), 2018a.
Andersen, O. B., Rose, S. K., Knudsen, P., and Stenseng, L.: The DTU18 MSS
Mean Sea Surface Improvement from SAR Altimetry, in: International Symposium
of Gravity, Geoid and Height Systems (GGHS) 2, The second joint meeting of
the International Gravity Field Service and Commission 2 of the
International Association of Geodesy, Copenhagen, Denmark, 17–21, https://orbit.dtu.dk/en/publications/a-new-dtu18-mss-mean-sea-surface-improvement-from-sar-altimetry (last access: 30 June 2022, 2018b.
Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hossetnmostafa, A. R., Jezek,
K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.: Laboratory
measurements of radar backscatter from bare and snow covered saline ice
sheets, Int. J. Remote Sens., 16, 851–876,
https://doi.org/10.1080/01431169508954448, 1995.
Cao, Y., Liang, S., Sun, L., Liu, J., Cheng, X., Wang, D., Chen, Y., Yu, M., and
Feng, K.: Trans-Arctic shipping routes expanding faster than the model
projections, Global Environmental Change, 73, 102488, https://doi.org/10.1016/j.gloenvcha.2022.102488, 2022.
Cartwright, D. E. and Edden, A. C.: Corrected Tables of Tidal
Harmonics, Geophys. J. Int., 33, 253–264, https://doi.org/10.1111/j.1365-246X.1973.tb03420.x, 1973.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.:
Accelerated decline in the Arctic sea ice cover, Geophys. Res.
Lett., 35, L01703, https://doi.org/10.1029/2007gl031972, 2008.
Degnan, J. J.: Photon-counting multikilohertz microlaser altimeters for
airborne and spaceborne topographic measurements, J. Geodyn., 34,
503–549, https://doi.org/10.1016/s0264-3707(02)00045-5, 2002.
Drinkwater, M. R., Hosseinmostafa, R., and Gogineni, P.: C-band backscatter
measurements of winter sea-ice in the Weddell Sea, Antarctica, Int. J.
Remote Sens., 16, 3365–3389, https://doi.org/10.1080/01431169508954635,
1995.
ESA: CryoSat-2 Product, ftp://science-pds.cryosat.esa.int/, last
access: 30 June 2022.
Fons, S. W., Kurtz, N. T., Bagnardi, M., Petty, A. A., and Tilling, R. L.:
Assessing CryoSat-2 Antarctic snow freeboard retrievals using data from
ICESat-2, Earth Space Sci., 8, e2021EA001728,
https://doi.org/10.1029/2021EA001728, 2021.
Giles, K. A., Laxon, S. W., Wingham, D. J., Wallis, D. W., Krabill, W. B.,
Leuschen, C. J., McAdoo, D., Manizade, S. S., and Raney, R. K.: Combined
airborne laser and radar altimeter measurements over the Fram Strait in May
2002, Remote Sens. Environ., 111, 182–194,
https://doi.org/10.1016/j.rse.2007.02.037, 2007.
Giles, K. A., Laxon, S. W., and Ridout, A. L.: Circumpolar thinning of
Arctic sea ice following the 2007 record ice extent minimum, Geophys.
Res. Lett., 35, L22502, https://doi.org/10.1029/2008gl035710, 2008.
Glissenaar, I. A., Landy, J. C., Petty, A. A., Kurtz, N. T., and Stroeve, J. C.: Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness, The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, 2021.
Hendricks, S. and Ricker, R.: Product User Guide & Algorithm
Specification – AWI CryoSat-2 Sea Ice Thickness (version 2.3), https://www.researchgate.net/publication/346677382 (last access: 30 June 2022), 2020.
IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf (last access: 27 March 2023), 2022.
Jiang, C., Lin, M., and Wei, H.: A Study of the Technology Used to Distinguish
Sea Ice and Seawater on the Haiyang-2A/B (HY-2A/B) Altimeter Data, Remote
Sens., 11, 1490, https://doi.org/10.3390/rs11121490, 2019.
Jiang, M., Xu, K., Zhong, W., and Jia, Y.: Preliminary HY-2B Radar Freeboard Retrieval Over Arctic Sea Ice, IGARSS 2022 – 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, 3904–3907,
https://doi.org/10.1109/IGARSS46834.2022.9883529, 2022.
Jiang, M., Zhong, W., Xu, K., and Jia, Y. :Estimation of Arctic Sea Ice Thickness
from Chinese HY-2B Radar Altimetry Data, Remote Sens., 15, 1180,
https://doi.org/10.3390/rs15051180, 2023.
Kurtz, N. and Harbeck, J.: CryoSat-2 Level-4 Sea Ice Elevation, Freeboard,
and Thickness, Version 1 [October–April, 2010–2018], NASA National Snow
and Ice Data Center Distributed Active Archive Center [data set], Boulder, Colorado
USA, https://doi.org/10.5067/96JO0KIFDAS8, 2017.
Kurtz, N., Studinger, M. S., Harbeck, J., Onana, V., and Farrell, S.: IceBridge Sea Ice Freeboard, Snow Depth, and Thickness in the Lincoln Sea, Northern Hemisphere, Tech. rep., Boulder, Colorado USA, NASA DAAC at the National Snow and Ice Data Center, 2012.
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Kwok, R.: ICESat observations of Arctic sea ice: A first look, Geophys.
Res. Lett., 31, L16401, https://doi.org/10.1029/2004gl020309, 2004.
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage:
Losses and coupled vari-ability (1958–2018), Environ. Res. Lett.,
13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018.
Kwok, R. and Cunningham, G. F.: Variability of Arctic sea ice thickness and
volume from CryoSat-2, Philos. T. Roy. Soc. A, 373, 20140157,
https://doi.org/10.1098/rsta.2014.0157, 2015.
Kwok, R., Cunningham, G. F., Zwally, H. J., and Yi, D.: Ice, Cloud, and land
Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard,
J. Geophys. Res., 112, C12013,
https://doi.org/10.1029/2006jc003978, 2007.
Kwok, R., Petty, A. A., Bagnardi, M., Kurtz, N. T., Cunningham, G. F., Ivanoff, A., and Kacimi, S.: Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products, The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, 2021.
Lawrence, I. R., Armitage, T. W. K., Tsamados, M. C., Stroeve, J. C.,
Dinardo, S., Ridout, A. L., Muir, A., Tilling, R. L., and Shepherd, A.:
Extending the Arctic Sea Ice Freeboard and Sea Level Record with the
Sentinel-3 Radar Altimeters, Adv. Space Res.,
https://doi.org/10.1016/j.asr.2019.10.011, 2019.
Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea ice
roughness overlooked as a key source of uncertainty in CryoSat-2 ice
freeboard retrievals, J. Geophys. Res.-Oceans, 125,
e2019JC015820, https://doi.org/10.1029/2019JC015820, 2020.
Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
thickness in the Arctic region, Nature, 425, 947–950,
https://doi.org/10.1038/nature02050, 2003.
Lindell, D. B. and Long, D. G.: Multiyear Arctic Sea Ice Classification
Using OSCAT and QuikSCAT, IEEE T. Geosci. Remote, 54, 167–175,
https://doi.org/10.1109/TGRS.2015.2452215, 2016.
Magruder, L. A., Brunt, K. M., and Alonzo, M.: Early ICESat-2 on-orbit
geolocation validation using ground-based corner cube retro-reflectors,
Remote Sens., 12, 3653, https://doi.org/10.3390/rs12213653, 2020.
Mallett, R. D. C., Lawrence, I. R., Stroeve, J. C., Landy, J. C., and Tsamados, M.: Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates, The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, 2020.
Meier, W. N. and Stroeve, J.: An updated assessment of the changing Arctic sea
ice cover, Oceanography, 35, 10–19, https://doi.org/10.5670/oceanog.2022.114, 2022.
Nab, C., Mallett, R., Gregory, W., Landy, J., Lawrence, I., Willatt, R.,
Stroeve, J., and Tsamados, T.: Synoptic variability in satellite
altimeter-derived radar freeboard of Arctic sea ice, Geophys. Res.
Lett., 50, e2022GL100696, https://doi.org/10.1029/2022GL100696, 2023.
Nandan, V ., Scharien, R. K., Geldsetzer, T., Kwok, R., Yackel, J. J.,
Mahmud, M. S., and Stroeve, J.: Snow Property Controls on Modeled Ku-Band
Altimeter Estimates of First Year Sea Ice Thickness: Case studies from the
Canadian and Norwegian Arctic, IEEE J. Sel. Top. Appl., 13, 1082–1096,
https://doi.org/10.1109/JSTARS.2020.2966432, 2020.
National Satellite Ocean Application Service (NSOAS): Instructions for
HY-2B Satellite Data, https://osdds.nsoas.org.cn/HY2B_introduce (last access: 30 June 2022), 2019.
Notz, D. and SIMIP Community: Arctic sea ice in CMIP6, Geophys. Res.
Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020.
NSOAS: HY-2B Product, ftp://osdds-ftp.nsoas.org.cn/, last access: 30 June
2022a.
NSOAS: HY-2B Product, https://osdds.nsoas.org.cn/MarineDynamic/, last access: 30 June 2022b.
Ollivier, A., Faugere, Y., Picot, N., Ablain, M., Femenias, P., and Benveniste,
J.: Envisat Ocean Altimeter Becoming Relevant for Mean Sea Level Trend
Studies, Mar. Geod., 35, 118–136,
https://doi.org/10.1080/01490419.2012.721632, 2012.
Paul, S., Hendricks, S., and Rinne, E.: Sea Ice Climate Change Initiative
Phase 2, D2.1 Sea Ice Thickness Algorithm Theoretical Basis Document (ATBD),
SICCI-P2-ATBD (SIT), v.1.0, 50 pp.,
https://admin.climate.esa.int/media/documents/Sea_Ice_Thickness_Algorithm_Theoretical_Basis_Document_1.0.pdf (last access: September 2022), 2017.
Petty, A. A., Kurtz, N. T., Kwok, R., Markus, T., and Neumann, T. A.:
Winter Arctic sea ice thickness from ICESat-2 freeboards, J.
Geophys. Res.-Oceans, 125, e2019JC015764,
https://doi.org/10.1029/2019JC015764, 2020.
Petty, A. A., Kwok, R., Bagnardi, M., Ivanoff, A., Kurtz, N., Lee, J., Wimert, J.,
and Hancock, D.: ATLAS/ICESat-2 L3B Daily and Monthly Gridded Sea Ice
Freeboard, Version 3, Boulder, Colorado USA, NASA
National Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/ATLAS/ATL20.003, 2021.
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.
Sallila, H., Farrell, S. L., McCurry, J., and Rinne, E.: Assessment of contemporary satellite sea ice thickness products for Arctic sea ice, The Cryosphere, 13, 1187–1213, https://doi.org/10.5194/tc-13-1187-2019, 2019.
Schwegmann, S., Rinne, E., Ricker, R., Hendricks, S., and Helm, V.: About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice, The Cryosphere, 10, 1415–1425, https://doi.org/10.5194/tc-10-1415-2016, 2016.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Shen, X., Ke, C., Xie, H., Li, M., and Xia, W.: A comparison of Arctic sea ice
freeboard products from Sentinel-3A and CryoSat-2 data, Int.
J.Remote Sens., 41, 2789–2806,
https://doi.org/10.1080/01431161.2019.1698078, 2020.
Skourup, H., Farrell, S. L., Hendricks, S., Ricker, R., Armitage, T. W. K.,
Ridout, A., and Baker, S.: An assessment of state-of-the-art mean sea surface
and geoid models of the Arctic Ocean: Implications for sea ice freeboard
retrieval, J. Geophys. Res.-ceans, 122, 8593–8613,
https://doi.org/10.1002/2017JC013176, 2017.
Stephenson, S. R. and Smith, L. C.: Influence of climate model variability on
projected Arctic shipping futures, Earth's Future, 3, 331–343,
https://doi.org/10.1002/2015EF000317, 2015.
Stroeve, J., Nandan, V., Willatt, R., Tonboe, R., Hendricks, S., Ricker, R., Mead, J., Mallett, R., Huntemann, M., Itkin, P., Schneebeli, M., Krampe, D., Spreen, G., Wilkinson, J., Matero, I., Hoppmann, M., and Tsamados, M.: Surface-based Ku- and Ka-band polarimetric radar for sea ice studies , The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, 2020.
Thomas, D. N. and Dieckmann, G. S.: Sea Ice, 2nd Edn., Wiley-Blackwell, Oxford,
UK, https://doi.org/10.1002/9781444317145, 2010.
Tilling, R. L., Ridout, A., and Shepherd, A.: Near-real-time Arctic sea ice thickness and volume from CryoSat-2, The Cryosphere, 10, 2003–2012, https://doi.org/10.5194/tc-10-2003-2016, 2016.
Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice
thickness and volume using CryoSat-2 radar altimeter data, Adv. Space Res.,
62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2017.
Tilling, R., Ridout, A., and Shepherd, A.: Assessing the impact of lead and
floe sampling on Arctic sea ice thickness estimates from Envisat and
CryoSat-2, J. Geophys. Res.-Oceans, 124, 7473–7485,
https://doi.org/10.1029/2019JC015232, 2019.
Tonboe, R. and Lavelle, J.: The EUMETSAT OSI SAF Sea Ice Concentration Algorithm
Theoretical Basis Document Product, OSI-401-b, Version 1.5, The Ocean and
Sea Ice Satellite Application Facility, https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/baseline_document/osisaf_cdop2_ss2_atbd_amsr2-sea-ice-conc_v1p1.pdf (last access: 30 June 2022), 2016.
Tonboe, R. T., Toudal Pedersen, L., and Haas, C.: Simulation of the
CryoSat-2 satellite radar altimeter sea ice thickness retrieval uncertainty,
Can. J. Remote Sens., 36, 55–67, https://doi.org/10.5589/m10-027, 2010.
Ulaby, F., Moore, R., and Fung, A.: Microwave remote sensing: active and
passive, Volume 3 – From Theory to Applications, Artech House, Norwood,
Massachusetts, USA, equation number: E.80, ISBN-13 978-0890061916, 1986.
Wahr, L. W.: Deformation of the earth induced by polar motion, J. Geophys.
Res., 90, 9363–9368, https://doi.org/10.1029/JB090iB11p09363, 1985.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N.,
Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea Ice, J. Climate,
12, 1814–1829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999.
Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm, V.: Ku-band radar penetration into snow cover on Arctic sea ice using
airborne data, Ann. Glaciol., 52, 197–205,
https://doi.org/10.3189/172756411795931589, 2011.
Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L., and Worby, A. P.: Field
investigations of Ku-band radar penetration into snow cover on Antarctic sea
ice, IEEE T. Geosci. Remote, 48, 365–372,
https://doi.org/10.1109/TGRS.2009.2028237, 2010.
Xu, S., Zhou, L., Liu, J., Lu, H., and Wang, B.: Data Synergy between Altimetry
and L-Band Passive Microwave Remote Sensing for the Retrieval of Sea Ice
Parameters – A Theoretical Study of Methodology, Remote Sensing, 9,
1079. https://doi.org/10.3390/rs9101079, 2017.
Zhang, S., Xuan, Y., Li, J., Geng, T., Li, X., and Xiao, F.: Arctic Sea Ice
Freeboard Retrieval from Envisat Altimetry Data, Remote Sens., 13
1414, https://doi.org/10.3390/rs13081414, 2021.
Zhang, S., Zhou, R., Jia, Y., Jin, T., and Kong, X.: Performance of HaiYang-2
Altimetric Data in Marine Gravity Research and a New Global Marine Gravity
Model NSOAS22, Remote Sens., 14, 4322,
https://doi.org/10.3390/rs14174322, 2022.
Short summary
We try to explore the application of SGDR data in polar sea ice thickness. Through this study, we find that it seems difficult to obtain reasonable results by using conventional methods. So we use the 15 lowest points per 25 km to estimate SSHA to retrieve more reasonable Arctic radar freeboard and thickness. This study also provides reference for reprocessing L1 data. We will release products that are more reasonable and suitable for polar sea ice thickness retrieval to better evaluate HY-2B.
We try to explore the application of SGDR data in polar sea ice thickness. Through this study,...