Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-667-2022
https://doi.org/10.5194/tc-16-667-2022
Research article
 | 
23 Feb 2022
Research article |  | 23 Feb 2022

Microstructure, micro-inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core – Part 2: Implications for palaeo-mineralogy

Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat

Related authors

What does the impurity variability at the microscale represent in ice cores? Insights from a conceptual approach
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
The Cryosphere, 19, 1373–1390, https://doi.org/10.5194/tc-19-1373-2025,https://doi.org/10.5194/tc-19-1373-2025, 2025
Short summary
New evidence on the microstructural localization of sulfur, chlorine & sodium in polar ice cores with implications for impurity diffusion
Pascal Bohleber, Nicolas Stoll, Piers Larkman, Rachael H. Rhodes, and David Clases
EGUsphere, https://doi.org/10.5194/egusphere-2025-355,https://doi.org/10.5194/egusphere-2025-355, 2025
Short summary
New insights on particle characteristics of previously characterised EGRIP ice core samples via single particle ICP-TOFMS
Nicolas Angelo Stoll, David Clases, Raquel Gonzalez de Vega, Matthias Elinkmann, Piers Michael Larkman, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2025-61,https://doi.org/10.5194/egusphere-2025-61, 2025
Short summary
Folding due to anisotropy in ice, from drill core-scale cloudy bands to km-scale internal reflection horizons
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817,https://doi.org/10.5194/egusphere-2024-3817, 2025
Short summary
EastGRIP ice core reveals the exceptional evolution of crystallographic preferred orientation throughout the Northeast Greenland Ice Stream
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653,https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Cores
A 350,000-year-old blue ice identified at the surface of the Elephant Moraine region, East Antarctica
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Ikumi Oyabu, Florian Ritterbusch, Songyi Kim, Jangil Moon, Joohan Lee, Yeongcheol Han, Soon Do Hur, Kenji Kawamura, Zheng-Tian Lu, Wei Jiang, and Guo-Min Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1436,https://doi.org/10.5194/egusphere-2025-1436, 2025
Short summary
What does the impurity variability at the microscale represent in ice cores? Insights from a conceptual approach
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
The Cryosphere, 19, 1373–1390, https://doi.org/10.5194/tc-19-1373-2025,https://doi.org/10.5194/tc-19-1373-2025, 2025
Short summary
Brief Communication: The Danish Replicate Drilling System – Results from the First Field Test
Julien Westhoff, Grant Vernon Boeckmann, Nicholas Mossor Rathmann, and Steffen Bo Hansen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3081,https://doi.org/10.5194/egusphere-2024-3081, 2024
Short summary
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024,https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
The grain-scale signature of isotopic diffusion in ice
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024,https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary

Cited articles

Alley, R., Perepezko, J., and Bentley, C. R.: Grain Growth in Polar Ice: I. Theory, J. Glaciol., 32, 415–424, https://doi.org/10.3189/S0022143000012132, 1986. a, b
Alley, R. B. and Woods, G. A.: Impurity influence on normal grain growth in the GISP2 ice core, Greenland, J. Glaciol., 42, 255–260, 1996. a
Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.: Water-pressure coupling of sliding and bed deformation: III. Application to Ice Stream B, Antarctica, J. Glaciol., 35, 130–139, https://doi.org/10.3189/002214389793701572, 1989. a
Ashby, M. F.: Boundary defects and the mechanism of particle movement through crystals, Scripta Metallurgica, 3, 843–848, https://doi.org/10.1016/0036-9748(69)90192-6, 1969. a
Axford, Y., de Vernal, A., and Osterberg, E. C.: Past Warmth and Its Impacts During the Holocene Thermal Maximum in Greenland, Annu. Rev. Earth Pl. Sc., 49, 279–307​​​​​​​, https://doi.org/10.1146/annurev-earth-081420-063858, 2021. a, b
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Share