Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4379-2022
https://doi.org/10.5194/tc-16-4379-2022
Research article
 | 
19 Oct 2022
Research article |  | 19 Oct 2022

In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet

Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler

Related authors

Mapping the vertical heterogeneity of Greenland's firn from 2011–2019 using airborne radar and laser altimetry
Anja Rutishauser, Kirk M. Scanlan, Baptiste Vandecrux, Nanna B. Karlsson, Nicolas Jullien, Andreas P. Ahlstrøm, Robert S. Fausto, and Penelope How
The Cryosphere, 18, 2455–2472, https://doi.org/10.5194/tc-18-2455-2024,https://doi.org/10.5194/tc-18-2455-2024, 2024
Short summary
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024,https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Impact of rain-on-snow events on snowpack structure and runoff under a boreal canopy
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
EGUsphere, https://doi.org/10.5194/egusphere-2023-3012,https://doi.org/10.5194/egusphere-2023-3012, 2024
Short summary
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023,https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023,https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Glacier Hydrology
Deep clustering in subglacial radar reflectance reveals subglacial lakes
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere, 18, 1241–1257, https://doi.org/10.5194/tc-18-1241-2024,https://doi.org/10.5194/tc-18-1241-2024, 2024
Short summary
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024,https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024,https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023,https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022,https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary

Cited articles

Adolph, A. C. and Albert, M. R.: Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties, The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014, 2014. a
Ahlstrøm, A., Gravesen, P., Andersen, S., van As, D., Citterio, M., Fausto, R., Nielsen, S., Jepsen, H., Kristensen, S., Christensen, E., Stenseng, L., Forsberg, R., Hanson, S., and Petersen, D.: A new programme for monitoring the mass loss of the Greenland ice sheet, Geological Survey of Denmark and Greenland Bulletin, 15, 61–64, https://doi.org/10.34194/geusb.v15.5045, 2008. a, b
Albert, M. R., Shultz, E. F., and Perron, F. E.: Snow and firn permeability at Siple Dome, Antarctica, Ann. Glaciol., 31, 353–356, https://doi.org/10.3189/172756400781820273, 2000. a
Ambach, W.: Untersuchungen zum Energieumsatz in der Ablationszone des Grönländischen Inlandeises, Meddelelser om Grønland, 174, 1–311, 1963. a
Ambach, W., Blumthaler, M., Eisner, H., Kirchlechner, P., Schneider, H., Behrens, H., Moser, H., Oerter, H., Rauert, W., and Bergman, H.: Untersuchungen der Wassertafel am Kesselwandferner (Ötztaler Alpen) an einem 30 Meter tiefen Firnschacht, Zeitschrift für Gletscherkunde und Glazialgeologie, 14, 61–71, 1978. 
Download
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.