Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3071-2022
https://doi.org/10.5194/tc-16-3071-2022
Research article
 | 
02 Aug 2022
Research article |  | 02 Aug 2022

Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada

Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos

Related authors

Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023,https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar
Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër
The Cryosphere, 17, 1225–1246, https://doi.org/10.5194/tc-17-1225-2023,https://doi.org/10.5194/tc-17-1225-2023, 2023
Short summary
Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020,https://doi.org/10.5194/tc-14-147-2020, 2020
Historical black carbon deposition in the Canadian High Arctic: a >250-year long ice-core record from Devon Island
Christian M. Zdanowicz, Bernadette C. Proemse, Ross Edwards, Wang Feiteng, Chad M. Hogan, Christophe Kinnard, and David Fisher
Atmos. Chem. Phys., 18, 12345–12361, https://doi.org/10.5194/acp-18-12345-2018,https://doi.org/10.5194/acp-18-12345-2018, 2018
Short summary
Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33° S)
Sébastien Monnier and Christophe Kinnard
Earth Surf. Dynam., 5, 493–509, https://doi.org/10.5194/esurf-5-493-2017,https://doi.org/10.5194/esurf-5-493-2017, 2017

Related subject area

Discipline: Glaciers | Subject: Energy Balance Obs/Modelling
Modeling of surface energy balance for Icelandic glaciers using remote-sensing albedo
Andri Gunnarsson, Sigurdur M. Gardarsson, and Finnur Pálsson
The Cryosphere, 17, 3955–3986, https://doi.org/10.5194/tc-17-3955-2023,https://doi.org/10.5194/tc-17-3955-2023, 2023
Short summary
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023,https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022,https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022,https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022,https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary

Cited articles

Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimons, S.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, 2010. 
Anderson, S. and Radić, V.: Identification of local water resource vulnerability to rapid deglaciation in Alberta, Nat. Clim. Change, 10, 933–938, 2020. 
Anslow, F. S., Hostetler, S., Bidlake, W. R., and Clark, P. U.: Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty, J. Geophys. Res.-Earth, 113, 2008. 
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res.-Earth, 111, https://doi.org/10.1029/2005JF000426, 2006. 
Arnold, N., Willis, I., Sharp, M., Richards, K., and Lawson, W.: A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland, J. Glaciol., 42, 77–89, 1996. 
Download
Short summary
This study implements a physically based, distributed glacier mass balance model in a context of sparse direct observations. Carefully constraining model parameters with ancillary data allowed for accurately reconstructing the mass balance of Saskatchewan Glacier over a 37-year period. We show that the mass balance sensitivity to warming is dominated by increased melting and that changes in glacier albedo and air humidity are the leading causes of increased glacier melt under warming scenarios.