Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2967-2022
https://doi.org/10.5194/tc-16-2967-2022
Research article
 | 
27 Jul 2022
Research article |  | 27 Jul 2022

High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys over 30 years

Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki

Related authors

Development and fluctuation of crystal orientation fabric in the deep sections of the Dome Fuji ice core, Antarctica: impacts of dust particles and migration recrystallization
Tomotaka Saruya, Atsushi Miyamoto, Shuji Fujita, Kumiko Goto-Azuma, Motohiro Hirabayashi, Akira Hori, Makoto Igarashi, Yoshinori Iizuka, Takao Kameda, Hiroshi Ohno, Wataru Shigeyama, and Shun Tsutaki
The Cryosphere, 19, 2365–2385, https://doi.org/10.5194/tc-19-2365-2025,https://doi.org/10.5194/tc-19-2365-2025, 2025
Short summary
Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
The Cryosphere, 19, 525–540, https://doi.org/10.5194/tc-19-525-2025,https://doi.org/10.5194/tc-19-525-2025, 2025
Short summary
Spatial variation in the specific surface area of surface snow measured along the traverse route from the coast to Dome Fuji, Antarctica, during austral summer
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024,https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
A one-dimensional temperature and age modeling study for selecting the drill site of the oldest ice core near Dome Fuji, Antarctica
Takashi Obase, Ayako Abe-Ouchi, Fuyuki Saito, Shun Tsutaki, Shuji Fujita, Kenji Kawamura, and Hideaki Motoyama
The Cryosphere, 17, 2543–2562, https://doi.org/10.5194/tc-17-2543-2023,https://doi.org/10.5194/tc-17-2543-2023, 2023
Short summary
Temporal variations of surface mass balance over the last 5000 years around Dome Fuji, Dronning Maud Land, East Antarctica
Ikumi Oyabu, Kenji Kawamura, Shuji Fujita, Ryo Inoue, Hideaki Motoyama, Kotaro Fukui, Motohiro Hirabayashi, Yu Hoshina, Naoyuki Kurita, Fumio Nakazawa, Hiroshi Ohno, Konosuke Sugiura, Toshitaka Suzuki, Shun Tsutaki, Ayako Abe-Ouchi, Masashi Niwano, Frédéric Parrenin, Fuyuki Saito, and Masakazu Yoshimori
Clim. Past, 19, 293–321, https://doi.org/10.5194/cp-19-293-2023,https://doi.org/10.5194/cp-19-293-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
The impact of regional-scale upper-mantle heterogeneity on glacial isostatic adjustment in West Antarctica
Erica M. Lucas, Natalya Gomez, and Terry Wilson
The Cryosphere, 19, 2387–2405, https://doi.org/10.5194/tc-19-2387-2025,https://doi.org/10.5194/tc-19-2387-2025, 2025
Short summary
Bathymetry-constrained warm-mode melt estimates derived from analysing oceanic gateways in Antarctica
Lena Nicola, Ronja Reese, Moritz Kreuzer, Torsten Albrecht, and Ricarda Winkelmann
The Cryosphere, 19, 2263–2287, https://doi.org/10.5194/tc-19-2263-2025,https://doi.org/10.5194/tc-19-2263-2025, 2025
Short summary
Satellite data reveal details of glacial isostatic adjustment in the Amundsen Sea Embayment, West Antarctica
Matthias O. Willen, Bert Wouters, Taco Broerse, Eric Buchta, and Veit Helm
The Cryosphere, 19, 2213–2227, https://doi.org/10.5194/tc-19-2213-2025,https://doi.org/10.5194/tc-19-2213-2025, 2025
Short summary
Review article: Feature tracing in radio-echo sounding products of terrestrial ice sheets and planetary bodies
Hameed Moqadam and Olaf Eisen
The Cryosphere, 19, 2159–2196, https://doi.org/10.5194/tc-19-2159-2025,https://doi.org/10.5194/tc-19-2159-2025, 2025
Short summary
Viscoelastic mechanics of tidally induced lake drainage in the grounding zone
Hanwen Zhang, Richard F. Katz, and Laura A. Stevens
The Cryosphere, 19, 2087–2103, https://doi.org/10.5194/tc-19-2087-2025,https://doi.org/10.5194/tc-19-2087-2025, 2025
Short summary

Cited articles

Azuma, N., Wang, Y., Yoshida, Y., Narita, H., Hondoh, T., Shoji, H., and Watanabe, O.: Crystallographic analysis of the Dome Fuji ice core, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 45–61, 2000. a
Beem, L. H., Young, D. A., Greenbaum, J. S., Blankenship, D. D., Cavitte, M. G. P., Guo, J., and Bo, S.: Aerogeophysical characterization of Titan Dome, East Antarctica, and potential as an ice core target, The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021, 2021. a
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick, M.: Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base, Science, 331, 1592–1595, https://doi.org/10.1126/science.1200109, 2011. a
Bingham, R. G., and Siegert, M. J.: Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history, Quaternary Sci. Rev., 28, 223–236, https://doi.org/10.1016/j.quascirev.2008.10.014, 2009. a
Black, H. and Budd, W.: Accumulation in the region of Wilkes, Wilkes Land, Antarctica, J. Glaciol., 5, 3–14, https://doi.org/10.3189/s0022143000028549, 1964. a
Short summary
We constructed an ice thickness map across the Dome Fuji region, East Antarctica, from improved radar data and previous data that had been collected since the late 1980s. The data acquired using the improved radar systems allowed basal topography to be identified with higher accuracy. The new ice thickness data show the bedrock topography, particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially high detail.
Share