Articles | Volume 16, issue 5
The Cryosphere, 16, 1807–1819, 2022
https://doi.org/10.5194/tc-16-1807-2022
The Cryosphere, 16, 1807–1819, 2022
https://doi.org/10.5194/tc-16-1807-2022
Research article
11 May 2022
Research article | 11 May 2022

An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations

Sutao Liao et al.

Related authors

The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022,https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
A comparison between Envisat and ICESat sea ice thickness in the Antarctic
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-227,https://doi.org/10.5194/tc-2021-227, 2021
Revised manuscript under review for TC
Short summary
On the 2011 record low Arctic sea ice thickness: a combination of dynamic and thermodynamic anomalies
Xuewei Li, Qinghua Yang, Lejiang Yu, Paul R. Holland, Chao Min, Longjiang Mu, and Dake Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-359,https://doi.org/10.5194/tc-2020-359, 2021
Preprint withdrawn
Short summary
Ensemble-based estimation of sea-ice volume variations in the Baffin Bay
Chao Min, Qinghua Yang, Longjiang Mu, Frank Kauker, and Robert Ricker
The Cryosphere, 15, 169–181, https://doi.org/10.5194/tc-15-169-2021,https://doi.org/10.5194/tc-15-169-2021, 2021
Short summary
Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021,https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic
Qingkai Wang, Zhaoquan Li, Peng Lu, Yigang Xu, and Zhijun Li
The Cryosphere, 16, 1941–1961, https://doi.org/10.5194/tc-16-1941-2022,https://doi.org/10.5194/tc-16-1941-2022, 2022
Short summary
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022,https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022,https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022,https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Chris Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-367,https://doi.org/10.5194/tc-2021-367, 2021
Revised manuscript accepted for TC
Short summary

Cited articles

Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596–601, https://doi.org/10.1038/ngeo2749, 2016. 
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. 
Behrendt, A., Dierking, W., Fahrbach, E., and Witte, H.: Sea ice draft in the Weddell Sea, measured by upward looking sonars, Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013, 2013a. 
Behrendt, A., Dierking, W., Fahrbach, E., and Witte, H.: Sea ice draft measured by upward looking sonars in the Weddell Sea (Antarctica), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.785565, 2013b. 
Blanchard-Wrigglesworth, E. and Bitz, C. M.: Characteristics of Arctic Sea-Ice Thickness Variability in GCMs, J. Climate, 27, 8244–8258, https://doi.org/10.1175/jcli-d-14-00345.1, 2014. 
Download
Short summary
The Global Ice-Ocean Modeling and Assimilation System (GIOMAS) can basically reproduce the observed variability in Antarctic sea-ice volume and its changes in the trend before and after 2013, and it underestimates Antarctic sea-ice thickness (SIT) especially in deformed ice zones. Assimilating additional sea-ice observations with advanced assimilation methods may result in a more accurate estimation of Antarctic SIT.