Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5323-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5323-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Institute of Environmental Engineering, Swiss Federal Institute of Technology in Zurich (ETH), 8093 Zurich, Switzerland
Georg Fischer
Microwaves and Radar Institute, German Aerospace Center (DLR), 82234 Wessling, Germany
Irena Hajnsek
Institute of Environmental Engineering, Swiss Federal Institute of Technology in Zurich (ETH), 8093 Zurich, Switzerland
Microwaves and Radar Institute, German Aerospace Center (DLR), 82234 Wessling, Germany
Related authors
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025, https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary
Short summary
This work presents an improved method for seasonal wet snow mapping in Karakoram using synthetic aperture radar (SAR) data and topographic data. This method enables robust wet snow classification in complex mountainous terrain. Large-scale wet snow maps were generated using the proposed method, covering three major water basins in Karakoram over 4 years (2017–2021). Crucial snow variables were further derived from the maps and provided valuable insights on regional snow melting dynamics.
Sara-Patricia Schlenk, Georg Fischer, Matteo Pardini, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2024-3474, https://doi.org/10.5194/egusphere-2024-3474, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) revealed ice features of unknown glaciological origin in southwest Greenland’s ablation zone. Using SAR techniques, we identified low-backscatter areas with surface scattering, in contrast to surrounding high-backscatter areas with scattering from the subsurface. Our first theory relates the low backscatter to residual liquid water in a weathering crust and the surrounding to bare glacier ice. These findings may deepen our understanding of ablation zone properties.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Cited articles
Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M., Markus, T., and Marshak, A.: The ICESat-2 laser altimetry mission, Proc. IEEE, 98, 735–751, https://doi.org/10.1109/JPROC.2009.2034765, 2010. a
Albert, M. D., Lee, Y. J., Ewe, H.-T., and Chuah, H.-T.: Multilayer model
formulation and analysis of radar backscattering from sea ice, Prog. Electromagn. Res., 128, 267–290, https://doi.org/10.2528/PIER12020205, 2012. a, b, c, d
Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes, R.: Variability of
Arctic sea-ice topography and its impact on the atmospheric surface drag, J. Geophys. Res.-Oceans, 119, 6743–6762, https://doi.org/10.1002/2013JC009712, 2014. a
Cox, G. F. and Weeks, W. F.: Salinity variations in sea ice, J. Glaciol., 13,
109–120, https://doi.org/10.1017/S0022143000023418, 1974. a, b
Dall, J.: InSAR elevation bias caused by penetration into uniform volumes, IEEE T. Geosci. Remote, 45, 2319–2324, https://doi.org/10.1109/TGRS.2007.896613, 2007. a, b
Dammann, D. O., Eriksson, L. E. B., Nghiem, S. V., Pettit, E. C., Kurtz, N. T., Sonntag, J. G., Busche, T. E., Meyer, F. J., and Mahoney, A. R.: Iceberg
topography and volume classification using TanDEM-X interferometry, The
Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019, 2019. a
Dierking, W.: Laser profiling of the ice surface topography during the Winter
Weddell Gyre Study 1992, J. Geophys. Res.-Oceans, 100, 4807–4820,
https://doi.org/10.1029/94JC01938, 1995. a, b
Dierking, W. and Davidson, M.: Use of L-and C-Band SAR Satellites for Sea Ice
and Iceberg Monitoring (LC-ICE), in: EGU General Assembly Conference
Abstracts, online, 19–30 April 2021, EGU21-3916, https://doi.org/10.5194/egusphere-egu21-3916, 2021. a
Divine, D. V., Pedersen, C. A., Karlsen, T. I., Aas, H. F., Granskog, M. A.,
Hudson, S. R., and Gerland, S.: Photogrammetric retrieval and analysis of
small scale sea ice topography during summer melt, Cold Reg. Sci. Technol.,
129, 77–84, https://doi.org/10.1016/j.coldregions.2016.06.006, 2016. a
DLR – German Aerospace Center: Earth Observation on the Web (EOWEB),
available at: https://eoweb.dlr.de, last access: 1 December 2021. a
Dominguez, R.: IceBridge DMS L1B Geolocated and Orthorectified Images,
Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/OZ6VNOPMPRJ0, 2018. a, b
Drinkwater, M. R. and Crocker, G.: Modelling changes in scattering properties
of the dielectric and young snow-covered sea ice at GHz requencies, J. Glaciol., 34, 274–282, https://doi.org/10.3189/S0022143000007012, 1988. a
Dufour-Beauséjour, S., Wendleder, A., Gauthier, Y., Bernier, M., Poulin,
J., Gilbert, V., Tuniq, J., Rouleau, A., and Roth, A.: Combining TerraSAR-X
and time-lapse photography for seasonal sea ice monitoring: the case of
Deception Bay, Nunavik, The Cryosphere, 14, 1595–1609,
https://doi.org/10.5194/tc-14-1595-2020, 2020. a
Duque, S., Balss, U., Rossi, C., Fritz, T., and Balzer, W.: TanDEM-X payload
ground segment, CoSSC generation and interferometric considerations, German
Aerospace Center, Oberpfaffenhofen, Germany, available at:
https://tandemx-science.dlr.de/pdfs/TD-PGS-TN-3129_CoSSCGenerationInterferometricConsiderations_1.0.pdf (last access: 1 December 2021), 2012. a
Eineder, M., Fritz, T., Mittermayer, J., Roth, A., Boerner, E., and Breit, H.: TerraSAR-X ground segment, basic product specification document, Tech. rep., CAF – Cluster Applied Remote Sensing, Oberpfaffenhofen, Germany, 2008. a
Farrell, S., Duncan, K., Buckley, E., Richter-Menge, J., and Li, R.: Mapping
sea ice surface topography in high fidelity with ICESat-2, Geophys. Res.
Lett., 47, e2020GL090708, https://doi.org/10.1029/2020GL090708, 2020. a
Farrell, S. L., Markus, T., Kwok, R., and Connor, L.: Laser altimetry sampling strategies over sea ice, Ann. Glaciol., 52, 69–76,
https://doi.org/10.3189/172756411795931660, 2011. a
Fischer, G., Papathanassiou, K. P., and Hajnsek, I.: Modeling multifrequency
Pol-InSAR data from the percolation zone of the Greenland Ice Sheet, IEEE
T. Geosci. Remote, 57, 1963–1976, https://doi.org/10.1109/TGRS.2018.2870301, 2018. a, b, c
Garbrecht, T., Lüpkes, C., Hartmann, J., and Wolff, M.: Atmospheric drag
coefficients over sea ice–validation of a parameterisation concept, Tellus A, 54, 205–219, https://doi.org/10.3402/tellusa.v54i2.12129, 2002. a
Gloersen, P.: Arctic and Antarctic sea ice, 1978–1987: Satellite
passive-microwave observations and analysis, 511, Scientific and Technical Information Program, National Aeronautics and Space Administration, Michigan State University, Michigan, USA, 1992. a
Gow, A., Ackley, S., Weeks, W., and Govoni, J.: Physical and structural
characteristics of Antarctic sea ice, Ann. Glaciol., 3, 113–117,
https://doi.org/10.3189/S0260305500002627, 1982. a
Haas, C., Liu, Q., and Martin, T.: Retrieval of Antarctic sea-ice pressure
ridge frequencies from ERS SAR imagery by means of in situ laser profiling
and usage of a neural network, Int. J. Remote Sens., 20, 3111–3123,
https://doi.org/10.1080/014311699211642, 1999. a
Haykin, S., Lewis, E. O., Raney, R. K., and Rossiter, J. R.: Remote sensing of sea ice and icebergs, in: vol. 13, John Wiley & Sons, New York, 1994. a
Hibler, W., Mock, S. J., and Tucker, W.: Classification and variation of sea
ice ridging in the western Arctic Basin, J. Geophys. Res., 79, 2735–2743,
https://doi.org/10.1029/JC079i018p02735, 1974. a
Jeffries, M., Morris, K., Weeks, W., and Worby, A.: Seasonal variations in the properties and structural composition of sea ice and snow cover in the
Bellingshausen and Amundsen Seas, Antarctica, J. Glaciol., 43, 138–151,
https://doi.org/10.3189/S0022143000002902, 1997. a, b
Jeffries, M., Li, S., Jana, R., Krouse, H., and Hurst-Cushing, B.: Late winter first-year ice floe thickness variability, seawater flooding and snow ice formation in the Amundsen and Ross Seas, in: Antarctic Sea Ice: Physical
processes, interactions and variability, edited by: Jeffries, M.,
Wiley Online Library, 69–88, https://doi.org/10.1029/AR074p0069, 1998. a
Jeffries, M. O., Krouse, H. R., Hurst-Cushing, B., and Maksym, T.: Snow-ice
accretion and snow-cover depletion on Antarctic first-year sea-ice floes,
Ann. Glaciol., 33, 51–60, https://doi.org/10.3189/172756401781818266, 2001. a, b, c
Joerg, H., Pardini, M., Hajnsek, I., and Papathanassiou, K. P.: 3-D scattering characterization of agricultural crops at C-Band using SAR tomography, IEEE T. Geosci. Remote, 56, 3976–3989, https://doi.org/10.1109/TGRS.2018.2818440, 2018. a
Kasilingam, D., Schuler, D., and Lee, J.-S.: The depolarization of radar
backscatter from rough surfaces due to surface roughness and slopes, in:
Proc. IGARSS., vol. 2, IEEE, 9–13 July 2001, Sydney, NSW, Australia, 925–927, https://doi.org/10.1109/IGARSS.2001.976682 2001. a
Kim, J.-W., Kim, D.-J., and Hwang, B. J.: Characterization of Arctic sea ice
thickness using high-resolution spaceborne polarimetric SAR data, IEEE T. Geosci. Remote, 50, 13–22, https://doi.org/10.1109/TGRS.2011.2160070, 2011. a
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M.: TanDEM-X: A satellite formation for high-resolution SAR
interferometry, IEEE T. Geosci. Remote, 45, 3317–3341, https://doi.org/10.1109/TGRS.2007.900693, 2007. a, b
Kugler, F., Lee, S.-K., Hajnsek, I., and Papathanassiou, K. P.: Forest height
estimation by means of Pol-InSAR data inversion: The role of the vertical
wavenumber, IEEE T. Geosci. Remote, 53, 5294–5311, https://doi.org/10.1109/TGRS.2015.2420996, 2015. a, b, c, d
Kurtz, N. T. and Markus, T.: Satellite observations of Antarctic sea ice
thickness and volume, J. Geophys. Res.-Oceans, 117, C08025, https://doi.org/10.1029/2012JC008141, 2012. a
Lee, J.-S. and Pottier, E.: Polarimetric radar imaging: from basics to
applications, CRC Press, Boca Raton, Florida, USA, https://doi.org/10.1080/01431161.2010.519925, 2009. a
Li, T., Zhang, B., Cheng, X., Westoby, M. J., Li, Z., Ma, C., Hui, F., Shokr,
M., Liu, Y., Chen, Z., Zhai, M., and Li, X.: Resolving fine-scale surface
features on polar sea ice: A first assessment of UAS photogrammetry
without ground control, Remote Sens., 11, 784, https://doi.org/10.3390/rs11070784, 2019. a
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using
subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015. a
Lopes, A., Mougin, E., Beaudoin, A., Goze, S., Nezry, E., Touzi, R., Karam, M., and Fung, A.: Phase difference statistics related to sensor and forest parameters, in: Proc. IGARSS, 26–29 May 1992, Houston, Texas, 779–781, https://doi.org/10.1109/IGARSS.1992.576832, 1992. a, b
Lytle, V. and Ackley, S.: Sea ice ridging in the eastern Weddell Sea, J.
Geophys. Res.-Oceans, 96, 18411–18416, https://doi.org/10.1029/91JC01978, 1991. a, b
Lytle, V. I., Worby, A., and Massom, R.: Sea-ice pressure ridges in East
Antarctica, Ann. Glaciol., 27, 449–454, https://doi.org/10.3189/1998AoG27-1-449-454,
1998. a
Meier, W. N., Markus, T., and Comiso, J. C.: AMSR-E/AMSR2 Unified L3 Daily
12.5 km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth
Polar Grids, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/RA1MIJOYPK3P, 2018. a
Melling, H. and Riedel, D. A.: The underside topography of sea ice over the
continental shelf of the Beaufort Sea in the winter of 1990, J. Geophys.
Res.-Oceans, 100, 13641–13653, https://doi.org/10.1029/95JC00309, 1995. a
Nandan, V., Geldsetzer, T., Islam, T., Yackel, J. J., Gill, J. P., Fuller, M. C., Gunn, G., and Duguay, C.: Ku-, X-and C-band measured and modeled microwave backscatter from a highly saline snow cover on first-year sea ice,
Remote Sens. Environ., 187, 62–75, https://doi.org/10.1016/j.rse.2016.10.004, 2016. a
Nghiem, S., Borgeaud, M., Kong, J., and Shin, R.: Polarimetric remote sensing
of geophysical media with layer random medium model, Prog. Electromagn. Res.,
3, 1–73, https://doi.org/10.1007/978-1-4899-3677-6_50, 1990. a, b, c
Nghiem, S., Kwok, R., Yueh, S., and Drinkwater, M.: Polarimetric signatures of sea ice: 2. Experimental observations, J. Geophys. Res.-Oceans, 100,
13681–13698, https://doi.org/10.1029/95JC00938, 1995b. a, b, c
Nghiem, S., Busche, T., Kraus, T., Bachmann, M., Kurtz, N., Sonntag, J., Woods, J., Ackley, S., Xie, H., Maksym, T., and Tinto, K.: Remote sensing of Antarctic sea ice with coordinated aircraft and satellite data acquisitions, in: Proc. IGARSS, IEEE, 22–27 July 2018, Valencia, Spain, 8531–8534, https://doi.org/10.1109/IGARSS.2018.8518550, 2018. a, b, c
NSIDC – National Snow and Ice Data Center: Distributed Active Archive Center (DAAC) IceBridge Data, NSIDC [data set], https://nsidc.org/data/icebridge,
last access: 1 December 2021. a
Ozsoy-Cicek, B., Ackley, S., Xie, H., Yi, D., and Zwally, J.: Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry, J. Geophys. Res.-Oceans, 118, 3807–3822, https://doi.org/10.1002/jgrc.20252, 2013. a, b
Papathanassiou, K. P. and Cloude, S. R.: Single-baseline polarimetric SAR
interferometry, IEEE T. Geosci. Remote, 39, 2352–2363, https://doi.org/10.1109/36.964971, 2001. a, b
Petty, A. A., Tsamados, M. C., Kurtz, N. T., Farrell, S. L., Newman, T.,
Harbeck, J. P., Feltham, D. L., and Richter-Menge, J. A.: Characterizing Arctic sea ice topography using high-resolution IceBridge data, The
Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, 2016. a, b, c, d
Rampal, P., Weiss, J., and Marsan, D.: Positive trend in the mean speed and
deformation rate of Arctic sea ice, 1979–2007, J. Geophys. Res.-Oceans, 114, C05013, https://doi.org/10.1029/2008JC005066, 2009. a
Reimnitz, E. and Kempema, E.: Field observations of slush ice generated during freeze-up in Arctic coastal waters, Mar. Geol., 77, 219–231,
https://doi.org/10.1016/0025-3227(87)90113-7, 1987. a
Rodriguez, E. and Martin, J.: Theory and design of interferometric synthetic
aperture radars, Radar and Signal Processing, IEE Proc. F, 139, 147–159, https://doi.org/10.1049/ip-f-2.1992.0018, 1992. a
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., and DiMarzio, J. P.: Overview of the ICESat mission, Geophys. Res. Lett., 32, L21S01, https://doi.org/10.1029/2005GL024009, 2005. a
Sharma, J. J., Hajnsek, I., Papathanassiou, K. P., and Moreira, A.: Estimation of glacier ice extinction using long-wavelength airborne Pol-InSAR, IEEE T. Geosci. Remote, 51, 3715–3732, https://doi.org/10.1109/TGRS.2012.2220855, 2012. a, b
Sturm, M. and Massom, R. A.: Snow and sea ice, in: Sea Ice, chap 5, edited by: Thomas, D. N. and Dieckmann, G. S., Wiley Online Library, 153–204, https://doi.org/10.1002/9781444317145.ch5, 2009. a
Timco, G. and Burden, R.: An analysis of the shapes of sea ice ridges, Cold
Reg. Sci. Technol., 25, 65–77, https://doi.org/10.1016/S0165-232X(96)00017-1, 1997. a
Tin, T. and Jeffries, M. O.: Morphology of deformed first-year sea ice features in the Southern Ocean, Cold Reg. Sci. Technol., 36, 141–163,
https://doi.org/10.1016/S0165-232X(03)00008-9, 2003. a
Tin, T., Jeffries, M. O., Lensu, M., and Tuhkuri, J.: Estimating the thickness of ridged sea ice from ship observations in the Ross Sea, Antarct. Sci., 15, 47–54, https://doi.org/10.1017/S0954102003001056, 2003.
a
Touzi, R. and Lopes, A.: Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields, IEEE T. Geosci. Remote, 34, 519–531, https://doi.org/10.1109/36.485128, 1996. a, b
Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser, A.: Properties
of snow overlying the sea ice off East Antarctica in late winter, 2007, Deep-Sea Res. Pt. II, 58, 1137–1148, https://doi.org/10.1016/j.dsr2.2010.12.002, 2011. a, b, c
Tucker, W. and Govoni, J.: Morphological investigations of first-year sea ice
pressure ridge sails, Cold Reg. Sci. Technol., 5, 1–12,
https://doi.org/10.1016/0165-232X(81)90036-7, 1981. a
Tucker, W. B., Sodhi, D. S., and Govoni, J. W.: Structure of first-year
pressure ridge sails in the Prudhoe Bay region, in: The Alaskan Beaufort Sea, edited by: Barnes, P. W., Schell, D. M., and Reimnitz, E.,
Academic Press, New York, 115–135, https://doi.org/10.1016/B978-0-12-079030-2.50012-5, 1984. a
Wakabayashi, H., Matsuoka, T., Nakamura, K., and Nishio, F.: Polarimetric characteristics of sea ice in the sea of Okhotsk observed by airborne L-band SAR, IEEE T. Geosci. Remote, 42, 2412–2425, https://doi.org/10.1109/TGRS.2004.836259, 2004. a
Walsh, J. E.: A comparison of Arctic and Antarctic climate change, present and future, Antarct. Sci., 21, 179–188, https://doi.org/10.1017/S0954102009001874, 2009. a
Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L., and Worby, A. P.: Field investigations of Ku-band radar penetration into snow cover on
Antarctic sea ice, IEEE T. Geosci. Remote, 48, 365–372,
https://doi.org/10.1109/TGRS.2009.2028237, 2009. a
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res.-Oceans, 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008. a
Yitayew, T. G., Dierking, W., Divine, D. V., Eltoft, T., Ferro-Famil, L.,
Rösel, A., and Negrel, J.: Validation of sea-ice topographic heights
derived from TanDEM-X interferometric SAR data with results from laser profiler and photogrammetry, IEEE T. Geosci. Remote, 56, 6504–6520, https://doi.org/10.1109/TGRS.2018.2839590, 2018. a
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
This study shows an elevation difference between the radar interferometric measurements and the...