Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5323-2021
https://doi.org/10.5194/tc-15-5323-2021
Research article
 | 
02 Dec 2021
Research article |  | 02 Dec 2021

Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry

Lanqing Huang, Georg Fischer, and Irena Hajnsek

Related authors

Coherent backscatter enhancement in bistatic Ku- and X-band radar observations of dry snow
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022,https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022,https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022,https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale
Simon Zwieback, Steven V. Kokelj, Frank Günther, Julia Boike, Guido Grosse, and Irena Hajnsek
The Cryosphere, 12, 549–564, https://doi.org/10.5194/tc-12-549-2018,https://doi.org/10.5194/tc-12-549-2018, 2018
Short summary
Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram
Vanessa Round, Silvan Leinss, Matthias Huss, Christoph Haemmig, and Irena Hajnsek
The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017,https://doi.org/10.5194/tc-11-723-2017, 2017
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023,https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023,https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023,https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Aerial observations of sea ice breakup by ship waves
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023,https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023,https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary

Cited articles

Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M., Markus, T., and Marshak, A.: The ICESat-2 laser altimetry mission, Proc. IEEE, 98, 735–751, https://doi.org/10.1109/JPROC.2009.2034765, 2010. a
Albert, M. D., Lee, Y. J., Ewe, H.-T., and Chuah, H.-T.: Multilayer model formulation and analysis of radar backscattering from sea ice, Prog. Electromagn. Res., 128, 267–290, https://doi.org/10.2528/PIER12020205, 2012. a, b, c, d
Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes, R.: Variability of Arctic sea-ice topography and its impact on the atmospheric surface drag, J. Geophys. Res.-Oceans, 119, 6743–6762, https://doi.org/10.1002/2013JC009712, 2014. a
Cloude, S.: Polarisation: applications in remote sensing, Oxford University Press, Oxford, https://doi.org/10.1093/acprof:oso/9780199569731.001.0001, 2010. a, b, c, d, e, f
Cox, G. F. and Weeks, W. F.: Salinity variations in sea ice, J. Glaciol., 13, 109–120, https://doi.org/10.1017/S0022143000023418, 1974. a, b
Download
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.