Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4381-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4381-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Rémi Granger
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), 3SR, 38000 Grenoble, France
Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige,
38000 Grenoble, France
Frédéric Flin
Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige,
38000 Grenoble, France
Wolfgang Ludwig
ESRF, BP 220 38043 Grenoble CEDEX, France
Ismail Hammad
ESRF, BP 220 38043 Grenoble CEDEX, France
Christian Geindreau
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), 3SR, 38000 Grenoble, France
Related authors
No articles found.
Lisa Bouvet, Nicolas Allet, Neige Calonne, Frédéric Flin, and Christian Geindreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2903, https://doi.org/10.5194/egusphere-2025-2903, 2025
Short summary
Short summary
A quasi-static model is used to simulate the distribution of liquid water in the pore space of snow for various water contents. Liquid water is gradually introduced and then removed from a set of 34 3D tomography snow images by capillarity during wetting and drying simulations. This work constitutes an exploratory numerical work (i) to study the water retention curves and (ii) the effective transport properties of wet snow and how they are influenced by the water distribution at the pore scale.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 18, 4285–4313, https://doi.org/10.5194/tc-18-4285-2024, https://doi.org/10.5194/tc-18-4285-2024, 2024
Short summary
Short summary
Four different macroscopic heat and mass transfer models have been derived for a large range of condensation coefficient values by an upscaling method. A comprehensive evaluation of the models is presented based on experimental datasets and numerical examples. The models reproduce the trend of experimental temperature and density profiles but underestimate the magnitude of the processes. Possible causes of these discrepancies and potential improvements for the models are suggested.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 17, 3553–3573, https://doi.org/10.5194/tc-17-3553-2023, https://doi.org/10.5194/tc-17-3553-2023, 2023
Short summary
Short summary
This study presents two new experiments of temperature gradient metamorphism in a snow layer using tomographic time series and focusing on the vertical extent. The results highlight two little known phenomena: the development of morphological vertical heterogeneities from an initial uniform layer, which is attributed to the temperature range and the vapor pressure distribution, and the quantification of the mass loss at the base caused by the vertical vapor fluxes and the dry lower boundary.
Neige Calonne, Alexis Burr, Armelle Philip, Frédéric Flin, and Christian Geindreau
The Cryosphere, 16, 967–980, https://doi.org/10.5194/tc-16-967-2022, https://doi.org/10.5194/tc-16-967-2022, 2022
Short summary
Short summary
Modeling gas transport in ice sheets from surface to close-off is key to interpreting climate archives. Estimates of the diffusion coefficient and permeability of snow and firn are required but remain a large source of uncertainty. We present a new dataset of diffusion coefficients and permeability from 20 to 120 m depth at two Antarctic sites. We suggest predictive formulas to estimate both properties over the entire 100–850 kg m3 density range, i.e., anywhere within the ice sheet column.
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Short summary
The role of snow microstructure in snow optical properties is only partially understood despite the importance of snow optical properties for the Earth system. We present a dataset combining bidirectional reflectance measurements and 3D images of snow. We show that the snow reflectance is adequately simulated using the distribution of the ice chord lengths in the snow microstructure and that the impact of the morphological type of snow is especially important when ice is highly absorptive.
Cited articles
Adams, E. E. and Miller, D. A.: Ice crystals grown from vapor onto an
orientated substrate: application to snow depth-hoar development and gas
inclusions in lake ice, J. Glaciol., 49, 8–12,
https://doi.org/10.3189/172756503781830953, 2003. a, b
Calonne, N.: Physique Des Métamorphoses de La Neige Sèche: De La
Microstructure Aux Propriétés Macroscopiques, PhD Thesis,
Grenoble, 2014. a
Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014, 2014. a, b
Calonne, N., Flin, F., Lesaffre, B., Dufour, A., Roulle, J., Puglièse, P.,
Philip, A., Lahoucine, F., Geindreau, C., and Panel, J.-M.: CellDyM:
A Room Temperature Operating Cryogenic Cell for the Dynamic Monitoring of
Snow Metamorphism by Time-Lapse X-Ray Microtomography, Geophys.
Res. Lett., 42, 3911–3918, https://doi.org/10.1002/2015GL063541, 2015. a, b, c
Calonne, N., Montagnat, M., Matzl, M., and Schneebeli, M.: The Layered
Evolution of Fabric and Microstructure of Snow at Point Barnola,
Central East Antarctica, Earth Planet. Sc. Lett., 460,
293–301, https://doi.org/10.1016/j.epsl.2016.11.041, 2017. a, b
Colbeck, S.: Theory of Metamorphism of Dry Snow, J. Geophys.
Res.-Oceans, 88, 5475–5482, https://doi.org/10.1029/JC088iC09p05475, 1983. a
de Quervain, M. R.: The Institute for Snow and Avalanche Research
at Weissfluhjoch/Davos: The First Five Years (1943 to 1948),
Ann. Glaciol., 4, 307–314, https://doi.org/10.3189/S0260305500005814, 1983. a
Dumont, M., Flin, F., Malinka, A., Brissaud, O., Hagenmuller, P., Lapalus, P., Lesaffre, B., Dufour, A., Calonne, N., Rolland du Roscoat, S., and Ando, E.: Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure, The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, 2021. a
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The international classification for seasonal snow on the ground, IHP-VII Technical Documents in Hydrology no. 83, IACS Contribution no.1, available at: http://unesdoc.unesco.org/ images/0018/001864/186462e.pdf (last access: 16 August 2021), 2009. a
Fisher, N. I., Lewis, T., and Embleton, B. J. J.: Statistical Analysis of
Spherical Data, Cambridge University Press, Cambridge, 1993. a
Flin, F. and Brzoska, J.-B.: The Temperature-Gradient Metamorphism of Snow:
Vapour Diffusion Model and Application to Tomographic Images, Ann.
Glaciol., 49, 17–21, https://doi.org/10.3189/172756408787814834, 2008. a
Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C., and Pieritz, R. A.:
Three-Dimensional Geometric Measurements of Snow Microstructural Evolution
under Isothermal Conditions, Ann. Glaciol., 38, 39–44, https://doi.org/10.3189/172756404781814942, 2004. a
Flin, F., Brzoska, J.-B., Coeurjolly, D., Pieritz, R., Lesaffre, B.,
Coléou, C., Lamboley, P., Teytaud, O., Vignoles, G., and Delesse, J.-F.:
An Adaptative Filtering Method to Evalute Normal Vectors and Surface Areas of
3D Objects. Application to Snow Images from X-Ray Tomography, IEEE
T. Image Process., 14, 585–596, https://doi.org/10.1109/tip.2005.846021, 2005. a, b, c
Flin, F., Lesaffre, B., Dufour, A., Gillibert, L., Hasan, A., Rolland du Roscoat, S., Cabanes, S., and Pugliese, P.: On the Computations of Specific Surface Area and Specific Grain Contact Area from Snow 3D Images, edited by: Furukawa, Y., Hokkaido University Press, Sapporo, JP, Proceedings of the 12th International Conference on the Physics and Chemistry of Ice held at Sapporo, Japan, 5–10 September 2010, 321–328, 2011. a
Flin, F., Calonne, N., Lesaffre, B., Dufour, A., Philip, A., Rolland du
Roscoat, S., and Geindreau, C.: The TG Metamorphism of Snow: toward an
Evaluation of 3D Numerical Models by Time-Lapse Images Acquired under
X-Ray Tomography?, Physics and Chemistry of Ice (PCI), Hanover, USA, 17—20 March 2014. a
Flin, F., Denis, R., Mehu, C., Calonne, N., Lesaffre, B., Dufour, A., Granger,
R., Lapalus, P., Hagenmuller, P., Roulle, J., Rolland du Roscoat, S.,
Bretin, E., and Geindreau, C.: Isothermal Metamorphism of Snow: measurement
of Interface Velocities and Phase-Field Modeling for a Better Understanding
of the Involved Mechanisms, Physics and Chemistry of Ice (PCI), Zuerich,
Switzerland, 8–12 January 2018. a
Furukawa, Y.: 25 – Snow and Ice Crystal Growth,
Editor(s): Tatau Nishinaga,
Handbook of Crystal Growth (Second Edition),
Elsevier, United Kingdom, 1061–1112, https://doi.org/10.1016/B978-0-444-56369-9.00025-3, 2015. a, b
Haffar, I., Flin, F., Geindreau, C., Petillon, N., Gervais, P.-C., and Edery,
V.: X-ray tomography for 3D analysis of ice particles in jet A-1 fuel,
Powder Technol., 384, 200–210,
https://doi.org/10.1016/j.powtec.2021.01.069, 2021. a
Hagenmuller, P., Chambon, G., Lesaffre, B., Flin, F., and Naaim, M.:
Energy-Based Binary Segmentation of Snow Microtomographic Images, J.
Glaciol., 59, 859–873, https://doi.org/10.3189/2013JoG13J035, 2013. a
Hammonds, K. and Baker, I.: Investigating the Thermophysical Properties of the
Ice–Snow Interface under a Controlled Temperature Gradient Part
II: Analysis, Cold Reg. Sci. Technol., 125, 12–20, https://doi.org/10.1016/j.coldregions.2016.01.006, 2016. a
Hammonds, K., Lieb-Lappen, R., Baker, I., and Wang, X.: Investigating the
Thermophysical Properties of the Ice–Snow Interface under a
Controlled Temperature Gradient: Part I: Experiments &
Observations, Cold Reg. Sci. Technol., 120, 157–167, https://doi.org/10.1016/j.coldregions.2015.09.006, 2015. a
Krol, Q. and Löwe, H.: Analysis of Local Ice Crystal Growth in Snow,
J. Glaciol., 62, 378–390, https://doi.org/10.1017/jog.2016.32, 2016. a
Krol, Q. and Löwe, H.: Upscaling ice crystal growth dynamics in snow: Rigorous
modeling and comparison to 4D X-ray tomography data, Acta Mater., 151,
478–487, https://doi.org/10.1016/j.actamat.2018.03.010, 2018. a
Kuroda, T. and Lacmann, R.: Growth Kinetics of Ice from the Vapour Phase and
Its Growth Forms, J. Cryst. Growth, 56, 189–205,
https://doi.org/10.1016/0022-0248(82)90028-8, 1982. a
Libbrecht, K. G.: The Physics of Snow Crystals, Rep. Prog. Phys.,
68, 855–895, https://doi.org/10.1088/0034-4885/68/4/R03, 2005. a
Ludwig, W., King, A., Reischig, P., Herbig, M., Lauridsen, E., Schmidt, S.,
Proudhon, H., Forest, S., Cloetens, P., du Roscoat, S. R., Buffière, J.,
Marrow, T., and Poulsen, H.: New Opportunities for 3D Materials Science
of Polycrystalline Materials at the Micrometre Lengthscale by Combined Use of
X-Ray Diffraction and X-Ray Imaging, Mater. Sci.
Eng. A-Struct., 524, 69–76, https://doi.org/10.1016/j.msea.2009.04.009, 2009. a
Marbouty, D.: An Experimental Study of Temperature-Gradient Metamorphism,
J. Glaciol., 26, 303–312, https://doi.org/10.3189/S0022143000010844, 1980. a, b
Miller, D. and Adams, E.: A Microstructural Dry-Snow Metamorphism Model for
Kinetic Crystal Growth, J. Glaciol., 55, 1003–1011, https://doi.org/10.3189/002214309790794832, 2009. a
Montagnat, M., Löwe, H., Calonne, N., Schneebeli, M., Matzl, M., and Jaggi,
M.: On the birth of structural and crystallographic fabric signals in polar
snow: A case study from the EastGRIP snowpack, Front. Earth Sci., 8,
365, https://doi.org/10.3389/feart.2020.00365 2020. a
Palenstijn, W. J., Batenburg, K. J., and Sijbers, J.: The ASTRA Tomography Toolbox, in: 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, 4, 1139–1145, available at: https://visielab.uantwerpen.be/sites/default/files/cmmse2013_0.pdf (last access: 8 September 2021), 2013. a
Palenstijn, W. J., Bédorf, J., and Batenburg, K. J.: A distributed SIRT implementation for the ASTRA Toolbox, in: Proceedings of The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 2015, edited by: King, M., Glick, S., and Mueller, K., 166–169, available at: https://ir.cwi.nl/pub/23719/23719A.pdf (last access: 8 September 2021), 2015. a
Pfeffer, W. T. and Mrugala, R.: Temperature Gradient and Initial Snow Density
as Controlling Factors in the Formation and Structure of Hard Depth Hoar,
J. Glaciol., 48, 485–494, https://doi.org/10.3189/172756502781831098, 2002. a, b
Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography, The Cryosphere, 6, 1141–1155, https://doi.org/10.5194/tc-6-1141-2012, 2012. a, b, c
Reischig, P., King, A., Nervo, L., Viganó, N., Guilhem, Y., Palenstijn,
W. J., Batenburg, K. J., Preuss, M., and Ludwig, W.: Advances in X-Ray
Diffraction Contrast Tomography: Flexibility in the Setup Geometry and
Application to Multiphase Materials, J. Appl. Crystallogr., 46,
297–311, https://doi.org/10.1107/S0021889813002604, 2013. a, b
Riche, F., Montagnat, M., and Schneebeli, M.: Evolution of Crystal Orientation
in Snow during Temperature Gradient Metamorphism, J. Glaciol., 59,
47–55, https://doi.org/10.3189/2013JoG12J116, 2013. a, b, c
Rolland du Roscoat, S., King, A., Philip, A., Reischig, P., Ludwig, W., Flin,
F., and Meyssonnier, J.: Analysis of Snow Microstructure by Means of
X-Ray Diffraction Contrast Tomography, Adv. Eng.
Mater., 13, 128–135, https://doi.org/10.1002/adem.201000221, 2011. a
Schneebeli, M. and Sokratov, S. A.: Tomography of Temperature Gradient
Metamorphism of Snow and Associated Changes in Heat Conductivity,
Hydrol. Process., 18, 3655–3665, https://doi.org/10.1002/hyp.5800, 2004.
a
Srivastava, P. K., Mahajan, P., Satyawali, P. K., and Kumar, V.: Observation of
Temperature Gradient Metamorphism in Snow by X-Ray Computed
Microtomography: Measurement of Microstructure Parameters and Simulation of
Linear Elastic Properties, Ann. Glaciol., 51, 73–82,
https://doi.org/10.3189/172756410791386571, 2010. a
Takahashi, Y. and Fujino, K.: Crystal Orientation of Fabrics in a Snow Pack,
Low Temp. Sci., Ser. A, 34, 71–78, 1976. a
Wilson, C. J. L., Russell-Head, D. S., Kunze, K., and Viola, G.: The Analysis
of Quartz C-Axis Fabrics Using a Modified Optical Microscope, J.
Microsc., 227, 30–41, https://doi.org/10.1111/j.1365-2818.2007.01784.x, 2007. a
Yokoyama, E. and Kuroda, T.: Pattern Formation in Growth of Snow Crystals
Occurring in the Surface Kinetic Process and the Diffusion Process, Phys.
Rev. A, 41, 2038, https://doi.org/10.1103/PhysRevA.41.2038, 1990. a
Short summary
In this study on temperature gradient metamorphism in snow, we investigate the hypothesis that there exists a favourable crystal orientation relative to the temperature gradient. We measured crystallographic orientations of the grains and their microstructural evolution during metamorphism using in situ time-lapse diffraction contrast tomography. Faceted crystals appear during the evolution, and we observe higher sublimation–deposition rates for grains with their c axis in the horizontal plane.
In this study on temperature gradient metamorphism in snow, we investigate the hypothesis that...