Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-4099-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4099-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite altimetry detection of ice-shelf-influenced fast ice
Gemma M. Brett
CORRESPONDING AUTHOR
Gateway Antarctica, University of Canterbury, Christchurch, New
Zealand
Daniel Price
Gateway Antarctica, University of Canterbury, Christchurch, New
Zealand
Wolfgang Rack
Gateway Antarctica, University of Canterbury, Christchurch, New
Zealand
Patricia J. Langhorne
Department of Physics, University of Otago, Dunedin, New Zealand
Related authors
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024, https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
Short summary
Glacial meltwater with ice crystals flows from beneath ice shelves, causing thicker sea ice with sub-ice platelet layers (SIPLs) beneath. Thicker sea ice and SIPL reveal where and how much meltwater is outflowing. We collected continuous measurements of sea ice and SIPL. In winter, we observed rapid SIPL growth with strong winds. In spring, SIPLs grew when tides caused offshore circulation. Wind-driven and tidal circulation influence glacial meltwater outflow from ice shelf cavities.
Gemma M. Brett, Gregory H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, and Anne Irvin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-61, https://doi.org/10.5194/tc-2021-61, 2021
Manuscript not accepted for further review
Short summary
Short summary
Using a geophysical technique, we observe temporal variability in the influence of ice shelf meltwater on coastal sea ice which forms platelet ice crystals which contribute to the thickness of the sea ice and accumulate into a thick mass called a sub-ice platelet layer (SIPL). The variability observed in the SIPL indicated that circulation of ice shelf meltwater out from the cavity in McMurdo Sound is influenced by tides and strong offshore winds which affect surface ocean circulation.
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Short summary
We developed a method to remotely detect proxy signals of Antarctic ice shelf melt under adjacent sea ice. It is based on aircraft surveys with electromagnetic induction sounding. We found year-to-year variability of the ice shelf melt proxy in McMurdo Sound and spatial fine structure that support assumptions about the melt of the McMurdo Ice Shelf. With this method it will be possible to map and detect locations of intense ice shelf melt along the coast of Antarctica.
Christian T. Wild, Reinhard Drews, Niklas Neckel, Joohan Lee, Sihyung Kim, Hyangsun Han, Won Sang Lee, Veit Helm, Sebastian Harry Reid Rosier, Oliver J. Marsh, and Wolfgang Rack
The Cryosphere, 19, 4533–4554, https://doi.org/10.5194/tc-19-4533-2025, https://doi.org/10.5194/tc-19-4533-2025, 2025
Short summary
Short summary
The stability of the Antarctic Ice Sheet depends on how resistance along the sides of large glaciers slows down the flow of ice into the ocean. We present a method to map ice strength using the effect of ocean tides on floating ice shelves. Incorporating weaker ice in shear zones improves the accuracy of model predictions, compared with satellite observations. This demonstrates the untapped potential of radar satellites to map ice stiffness in the most critical areas for ice sheet stability.
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024, https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
Short summary
Glacial meltwater with ice crystals flows from beneath ice shelves, causing thicker sea ice with sub-ice platelet layers (SIPLs) beneath. Thicker sea ice and SIPL reveal where and how much meltwater is outflowing. We collected continuous measurements of sea ice and SIPL. In winter, we observed rapid SIPL growth with strong winds. In spring, SIPLs grew when tides caused offshore circulation. Wind-driven and tidal circulation influence glacial meltwater outflow from ice shelf cavities.
Gemma M. Brett, Gregory H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, and Anne Irvin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-61, https://doi.org/10.5194/tc-2021-61, 2021
Manuscript not accepted for further review
Short summary
Short summary
Using a geophysical technique, we observe temporal variability in the influence of ice shelf meltwater on coastal sea ice which forms platelet ice crystals which contribute to the thickness of the sea ice and accumulate into a thick mass called a sub-ice platelet layer (SIPL). The variability observed in the SIPL indicated that circulation of ice shelf meltwater out from the cavity in McMurdo Sound is influenced by tides and strong offshore winds which affect surface ocean circulation.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Short summary
We developed a method to remotely detect proxy signals of Antarctic ice shelf melt under adjacent sea ice. It is based on aircraft surveys with electromagnetic induction sounding. We found year-to-year variability of the ice shelf melt proxy in McMurdo Sound and spatial fine structure that support assumptions about the melt of the McMurdo Ice Shelf. With this method it will be possible to map and detect locations of intense ice shelf melt along the coast of Antarctica.
Cited articles
Armitage, T. W. K. and Davidson, M. W. J.: Using the Interferometric
Capabilities of the ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice
Freeboard Retrievals, IEEE T. Geosci. Remote,
52, 529–536, https://doi.org/10.1109/TGRS.2013.2242082, 2014.
Arndt, S., Hoppmann, M., Schmithüsen, H., Fraser, A. D., and Nicolaus, M.: Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica, The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, 2020.
Barry, J. and Dayton, P.: Current patterns in McMurdo Sound, Antarctica and
their relationship to local biotic communities, Polar Biol., 8, 367–376,
1988.
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011.
Bouzinac, C.: CryoSat product handbook, European Space Agency, Noordwijk,
2012.
Brett, G., Irvin, A., Rack, W., Haas, C., Langhorne, P., and Leonard, G.:
Variability in the Distribution of Fast Ice and the Sub-ice Platelet Layer
Near McMurdo Ice Shelf, J. Geophys. Res.-Oceans, 125,
e2019JC015678, https://doi.org/10.1029/2019JC015678, 2020.
Brett, G., Leonard, G., Isaacs, F., and Robinson, N.: Drill hole
measurements of fast ice and sub-ice platelet layer thickness, and snow
depth in McMurdo Sound – November 2018, Pangaea [data set], https://doi.pangaea.de/10.1594/PANGAEA.933050 (available on request), 2021.
Dempsey, D. E., Langhorne, P. J., Robinson, N. J., Williams, M. J. M.,
Haskell, T. G., and Frew, R. D.: Observation and modeling of platelet ice
fabric in McMurdo Sound, Antarctica, J. Geophys. Res., 115,
C01007, https://doi.org/10.1029/2008jc005264, 2010.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T., Ligtenberg,
S. R., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt
rates of Antarctic ice shelves, Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013.
Eicken, H. and Lange, M. A.: Development and properties of sea ice in the
coastal regime of the southeastern Weddell Sea, J. Geophys. Res.-Oceans, 94, 8193–8206, 1989.
Foldvik, A. and Kvinge, T.: Conditional instability of sea water at the
freezing point, Deep Sea Research and Oceanographic Abstracts, 169–174, 1974.
Foldvik, A., Gammelsrød, T., Østerhus, S., Fahrbach, E., Rohardt, G.,
Schröder, M., Nicholls, K. W., Padman, L., and Woodgate, R.: Ice shelf
water overflow and bottom water formation in the southern Weddell Sea,
J. Geophys. Res.-Oceans, 109, C02015, https://doi.org/10.1029/2003JC002008, 2004.
Fons, S. W. and Kurtz, N. T.: Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns, The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019, 2019.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Change, 6, 479–482, 2016.
Giles, A. B., Massom, R. A., and Lytle, V. I.: Fast-ice distribution in East
Antarctica during 1997 and 1999 determined using RADARSAT data, J. Geophys. Res.-Oceans, 113, C02S14, https://doi.org/10.1029/2007JC004139, 2008.
Gough, A. J., Mahoney, A. R., Langhorne, P. J., Williams, M. J., Robinson,
N. J., and Haskell, T. G.: Signatures of supercooling: McMurdo Sound
platelet ice, J. Glaciol., 58, 38–50, 2012.
Haas, C. Langhorne, P. J., Rack, W., Leonard, G. H., Brett, G. M., Price, D., Beckers, J. F., and Gough, A. J.: Sub-ice platelet-layer thickness in McMurdo Sound, Antarctica, 2009–2017, PANGAEA, https://doi.org/10.1594/PANGAEA.931175, 2021.
Hellmer, H. H.: Impact of Antarctic ice shelf basal melting on sea ice and
deep ocean properties, Geophys. Res. Lett., 31, L10307, https://doi.org/10.1029/2004GL019506, 2004.
Holland, P. R. and Feltham, D. L.: Frazil dynamics and precipitation in a
water column with depth-dependent supercooling, J. Fluid Mech.,
530, 101–124, 2005.
Hoppmann, M., Nicolaus, M., Hunkeler, P. A., Heil, P., Behrens, L. K.,
König-Langlo, G., and Gerdes, R.: Seasonal evolution of an ice-shelf
influenced fast-ice regime, derived from an autonomous thermistor chain,
J. Geophys. Res.-Oceans, 120, 1703–1724, https://doi.org/10.1002/2014jc010327, 2015.
Hoppmann, M., Richter, M. E., Smith, I. J., Jendersie, S., Langhorne, P.,
Thomas, D., and Dieckmann, G.: Platelet ice, the Southern Ocean's hidden
ice: a review, Ann. Glaciol., 62, 341–368, 2020.
Hughes, K., Langhorne, P., Leonard, G., and Stevens, C.: Extension of an Ice
Shelf Water plume model beneath sea ice with application in McMurdo Sound,
Antarctica, J. Geophys. Res.-Oceans, 119, 8662–8687, 2014.
Jacobs, S., Helmer, H., Doake, C., Jenkins, A., and Frolich, R.: Melting of
ice shelves and the mass balance of Antarctica, J. Glaciol., 38,
375–387, 1992.
Jacobs, S. S., Fairbanks, R. G., and Horibe, Y.: Origin and evolution of
water masses near the Antarctic continental margin: Evidence from
H O/H O ratios in seawater, in: Oceanology of the Antarctic continental shelf, edited by: Jacobs, S. S., American Geophysical Union, 43, 59–85, 1985.
Jenkins, A. and Bombosch, A.: Modeling the effects of frazil ice crystals on
the dynamics and thermodynamics of ice shelf water plumes, J. Geophys. Res.-Oceans, 100, 6967–6981, 1995.
Kim, S., Saenz, B., Scanniello, J., Daly, K., and Ainley, D.: Local
climatology of fast ice in McMurdo Sound, Antarctica, Antarct. Sci., 30,
125–142, 2018.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Kusahara, K. and Hasumi, H.: Pathways of basal meltwater from Antarctic ice
shelves: A model study, J. Geophys. Res.-Oceans, 119,
5690–5704, 2014.
Kwok, R.: Simulated effects of a snow layer on retrieval of CryoSat-2 sea
ice freeboard, Geophys. Res. Lett., 41, 5014–5020, 2014.
Langhorne, P. J., Hughes, K. G., Gough, A. J., Smith, I. J., Williams, M. J.
M., Robinson, N. J., Stevens, C. L., Rack, W., Price, D., Leonard, G. H.,
Mahoney, A. R., Haas, C., and Haskell, T. G.: Observed platelet ice
distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux,
Geophys. Res. Lett., 42, 5442–5451, https://doi.org/10.1002/2015gl064508, 2015.
Langhorne, P. J., Leonard, G., Gough, A. J., Hughes, K. G., Haas, C.,
Beckers, J. F., Price, D., Barnsdale, K., Rack, W., and Brett, G.: Drill
hole measurements of fast ice and sub-ice platelet layer thickness, and snow
depth in McMurdo Sound – November/December 2011, Pangaea [data set],
https://doi.pangaea.de/10.1594/PANGAEA.933079, 2021a.
Langhorne, P. J., Leonard, G., Brett, G., Rack, W., Haas, C., Fraser, E.,
Xie, H., Bault, J., and Gao, Y.: Drill hole measurements of fast ice and
sub-ice platelet layer thickness, and snow depth in McMurdo Sound –
November 2017, Pangaea [data set], https://doi.pangaea.de/10.1594/PANGAEA.933076, 2021b.
Leonard, G. H., Purdie, C. R., Langhorne, P. J., Haskell, T. G., Williams,
M. J. M., and Frew, R. D.: Observations of platelet ice growth and
oceanographic conditions during the winter of 2003 in McMurdo Sound,
Antarctica, J. Geophys. Res.-Oceans, 111, C04012, https://doi.org/10.1029/2005JC002952, 2006.
Leonard, G. H., Langhorne, P. J., Williams, M. J., Vennell, R., Purdie, C.
R., Dempsey, D. E., Haskell, T. G., and Frew, R. D.: Evolution of
supercooling under coastal Antarctic sea ice during winter, Antarct.
Sci., 23, 399–409, 2011.
Lewis, E. and Perkin, R.: The winter oceanography of McMurdo Sound,
Antarctica, in: Oceanology of the Antarctic continental shelf, edited by: Jacobs, S. S., American Geophysical Union, 43, 145–165, 1985.
MacAyeal, D. R.: Thermohaline circulation below the Ross Ice Shelf: A
consequence of tidally induced vertical mixing and basal melting, J. Geophys. Res.-Oceans, 89, 597–606, 1984.
Mahoney, A. R., Gough, A. J., Langhorne, P. J., Robinson, N. J., Stevens, C.
L., Williams, M. M., and Haskell, T. G.: The seasonal appearance of ice
shelf water in coastal Antarctica and its effect on sea ice growth, J. Geophys. Res.-Oceans, 116, C11032, https://doi.org/10.1029/2011JC0070, 2011.
Maksym, T. and Markus, T.: Antarctic sea ice thickness and snow-to-ice
conversion from atmospheric reanalysis and passive microwave snow depth,
J. Geophys. Res.-Oceans, 113, C02S12, https://doi.org/10.1029/2006JC004085, 2008.
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1, 2018.
Massom, R. A., Giles, A. B., Fricker, H. A., Warner, R. C., Legrésy, B.,
Hyland, G., Young, N., and Fraser, A. D.: Examining the interaction between
multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica:
Another factor in ice sheet stability?, J. Geophys. Res.,
115, C12027, https://doi.org/10.1029/2009JC006083, 2010.
Ohshima, K. I., Nihashi, S., and Iwamoto, K.: Global view of sea-ice
production in polynyas and its linkage to dense/bottom water formation,
Geoscience Letters, 3, 13, https://doi.org/10.1186/s40562-016-0045-4, 2016.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The
development and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res.-Sol. Ea., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Price, D., Soltanzadeh, I., Rack, W., and Dale, E.: Snow-driven uncertainty in CryoSat-2-derived Antarctic sea ice thickness – insights from McMurdo Sound, The Cryosphere, 13, 1409–1422, https://doi.org/10.5194/tc-13-1409-2019, 2019.
Price, D., Rack, W., Haas, C., Langhorne, P. J., and Marsh, O.: Sea ice
freeboard in McMurdo Sound, Antarctica, derived by surface-validated ICESat
laser altimeter data, J. Geophys. Res.-Oceans, 118,
3634–3650, 2013.
Price, D., Rack, W., Langhorne, P. J., Haas, C., Leonard, G., and Barnsdale, K.: The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice, The Cryosphere, 8, 1031–1039, https://doi.org/10.5194/tc-8-1031-2014, 2014.
Price, D., Beckers, J., Ricker, R., Kurtz, N., Rack, W., Haas, C., Helm, V.,
Hendricks, S., Leonard, G., and Langhorn, P.: Evaluation of CryoSat-2
derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica,
J. Glaciol., 61, 285–300, 2015.
Purdie, C. R., Langhorne, P. J., Leonard, G. H., and Haskell, T. G.: Growth
of first-year landfast Antarctic sea ice determined from winter temperature
measurements, Ann. Glaciol., 44, 170–176, 2006.
Rack, W., Haas, C., Price, D., Langhorne, P. J., Leonard, G., and Brett,
G.,: Drill hole measurements of fast ice and sub-ice platelet layer
thickness, and snow depth in McMurdo Sound – November 2013, Pangaea [data
set], https://doi.pangaea.de/10.1594/PANGAEA.933078, 2021.
Ricker, R., Hendricks, S., and Beckers, J.: The impact of geophysical
corrections on sea-ice freeboard retrieved from satellite altimetry, Remote
Sens., 8, 317, https://doi.org/10.3390/rs8040317, 2016.
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.
Ricker, R., Hendricks, S., Perovich, D. K., Helm, V., and Gerdes, R.: Impact
of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An
observational approach with buoy data, Geophys. Res. Lett., 42,
4447–4455, https://doi.org/10.1002/2015GL064081, 2015.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013.
Robinson, N. and Williams, M.: Iceberg-induced changes to polynya operation
and regional oceanography in the southern Ross Sea, Antarctica, from in situ
observations, Antarct. Sci., 24, 514–526, 2012.
Robinson, N. J., Williams, M. J. M., Stevens, C. L., Langhorne, P. J., and
Haskell, T. G.: Evolution of a supercooled Ice Shelf Water plume with an
actively growing subice platelet matrix, J. Geophys. Res.-Oceans, 119, 3425–3446, https://doi.org/10.1002/2013JC009399, 2014.
Silvano, A., Rintoul, S. R., Pena-Molino, B., Hobbs, W. R., van Wijk, E.,
Aoki, S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater
enhances melting of ice shelves and reduces formation of Antarctic Bottom
Water, Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467, 2018.
Skourup, H., Farrell, S. L., Hendricks, S., Ricker, R., Armitage, T. W.,
Ridout, A., Andersen, O. B., Haas, C., and Baker, S.: An Assessment of
State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean:
Implications for Sea Ice Freeboard Retrieval, J. Geophys. Res.-Oceans, 122, 8593–8613, 2017.
Smith, I. J., Langhorne, P. J., Frew, R. D., Vennell, R., and Haskell, T.
G.: Sea ice growth rates near ice shelves, Cold Reg. Sci. Technol.,
83–84, 57–70, https://doi.org/10.1016/j.coldregions.2012.06.005, 2012.
Smith, I. J., Langhorne, P. J., Haskell, T. G., Joe Trodahl, H., Frew, R.,
and Ross Vennell, M.: Platelet ice and the land-fast sea ice of McMurdo
Sound, Antarctica, Ann. Glaciol., 33, 21–27, 2001.
Stevens, C. L., Robinson, N. J., Williams, M. J. M., and Haskell, T. G.: Observations of turbulence beneath sea ice in southern McMurdo Sound, Antarctica, Ocean Sci., 5, 435–445, https://doi.org/10.5194/os-5-435-2009, 2009.
Webb, E. and Hall, A.: Geophysical corrections in level 2 CryoSat data
products, European Space Agency, IDEAS-VEG-IPF-MEM-1288 Version, 5, 2016.
Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm, V.:
Ku-band radar penetration into snow cover on Arctic sea ice using airborne
data, Ann. Glaciol., 52, 197–205, 2011.
Wingham, D., Francis, C., Baker, S., Bouzinac, C., Brockley, D., Cullen, R.,
de Chateau-Thierry, P., Laxon, S., Mallow, U., and Mavrocordatos, C.:
CryoSat: A mission to determine the fluctuations in Earth's land and marine
ice fields, Adv. Space Res., 37, 841–871, 2006.
Zwally, H. J., Yi, D., Kwok, R., and Zhao, Y.: ICESat measurements of sea
ice freeboard and estimates of sea ice thickness in the Weddell Sea, J. Geophys. Res.-Oceans, 113, C02S15, https://doi.org/10.1029/2007JC004284, 2008.
Short summary
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker and, in particular conditions, to have a loose mass of platelet ice crystals called a sub‐ice platelet layer beneath. This causes the sea ice freeboard to stand higher above sea level. In this study, we demonstrate for the first time that the signature of ice shelf meltwater in the surface ocean manifesting as higher sea ice freeboard in McMurdo Sound is detectable from space using satellite technology.
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker...