Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard
Department of Geosciences, University of Oslo, Oslo, Norway
Thomas V. Schuler
Department of Geosciences, University of Oslo, Oslo, Norway
Adrien Gilbert
CNRS, IGE, Université Grenoble-Alpes, Grenoble, France
Related authors
No articles found.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733, https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60-70% and that accounting for this effect results in less ice loss by the end of the century.
Juan-Pedro Roldán-Blasco, Adrien Gilbert, Luc Piard, Florent Gimbert, Christian Vincent, Olivier Gagliardini, Anuar Togaibekov, Andrea Walpersdorf, and Nathan Maier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1600, https://doi.org/10.5194/egusphere-2024-1600, 2024
Short summary
Short summary
The flow of glaciers and ice sheets is due to ice deformation and basal sliding driven by gravitational forces. Quantifying the rate at which ice deforms under its own weight is critical to assessing glacier evolution. This study uses borehole instrumentation in an Alpine glacier to quantify ice deformation and constrain its viscosity in a natural setting. Our results show that the viscosity of ice at 0° C is largely influenced by interstitial liquid water which enhances ice deformation.
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024, https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Short summary
We explore the interplay between surface runoff and subglacial conditions. We focus on Kongsvegen glacier in Svalbard. We drilled 350 m down to the glacier base to measure water pressure, till strength, seismic noise, and glacier surface velocity. In the low-melt season, the drainage system adapted gradually, while the high-melt season led to a transient response, exceeding drainage capacity and enhancing sliding. Our findings contribute to discussions on subglacial hydro-mechanical processes.
Thomas J. Barnes, Thomas V. Schuler, Simon Filhol, and Karianne S. Lilleøren
Earth Surf. Dynam., 12, 801–818, https://doi.org/10.5194/esurf-12-801-2024, https://doi.org/10.5194/esurf-12-801-2024, 2024
Short summary
Short summary
In this paper, we use machine learning to automatically outline landforms based on their characteristics. We test several methods to identify the most accurate and then proceed to develop the most accurate to improve its accuracy further. We manage to outline landforms with 65 %–75 % accuracy, at a resolution of 10 m, thanks to high-quality/high-resolution elevation data. We find that it is possible to run this method at a country scale to quickly produce landform inventories for future studies.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Anirudha Mahagaonkar, Geir Moholdt, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-4, https://doi.org/10.5194/tc-2023-4, 2023
Revised manuscript not accepted
Short summary
Short summary
Surface meltwater lakes along the margins of the Antarctic Ice Sheet can be important for ice shelf dynamics and stability. We used optical satellite imagery to study seasonal evolution of meltwater lakes in Dronning Maud Land. We found large interannual variability in lake extents, but with consistent seasonal patterns. Although correlation with summer air temperature was strong locally, other climatic and environmental factors need to be considered to explain the large regional variability.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert
The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021, https://doi.org/10.5194/tc-15-1435-2021, 2021
Short summary
Short summary
In Greenland, ice motion and the surface geometry depend on the friction at the bed. We use satellite measurements and modeling to determine how ice speeds and friction are related across the ice sheet. The relationships indicate that ice flowing over bed bumps sets the friction across most of the ice sheet's on-land regions. This result helps simplify and improve our understanding of how ice motion will change in the future.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Elena Barbaro, Krystyna Koziol, Mats P. Björkman, Carmen P. Vega, Christian Zdanowicz, Tonu Martma, Jean-Charles Gallet, Daniel Kępski, Catherine Larose, Bartłomiej Luks, Florian Tolle, Thomas V. Schuler, Aleksander Uszczyk, and Andrea Spolaor
Atmos. Chem. Phys., 21, 3163–3180, https://doi.org/10.5194/acp-21-3163-2021, https://doi.org/10.5194/acp-21-3163-2021, 2021
Short summary
Short summary
This paper shows the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on 7 glaciers across Svalbard. The dataset consists of the concentration, mass loading, spatial and altitudinal distribution of major ion species (Ca2+, K+,
Na2+, Mg2+,
NH4+, SO42−,
Br−, Cl− and
NO3−), together with its stable oxygen and hydrogen isotope composition (δ18O and
δ2H) in the snowpack. This study was part of the larger Community Coordinated Snow Study in Svalbard.
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020, https://doi.org/10.5194/hess-24-4641-2020, 2020
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197, https://doi.org/10.5194/tc-2020-197, 2020
Revised manuscript not accepted
Short summary
Short summary
Freshwater discharge from tidewater glaciers influences fjord circulation and fjord ecosystem. Glacier hydrology plays crucial role in transporting water underneath glacier ice. We investigated hydrology beneath the tidewater glaciers of Kongsfjord basin in Northwest Svalbard and found that subglacial water flow differs substantially from surface flow of glacier ice. Furthermore, we derived freshwater discharge time-series from all the glaciers to the fjord.
Thomas Vikhamar Schuler and Torbjørn Ims Østby
Earth Syst. Sci. Data, 12, 875–885, https://doi.org/10.5194/essd-12-875-2020, https://doi.org/10.5194/essd-12-875-2020, 2020
Short summary
Short summary
Atmospheric variables needed to force terrestrial process models (permafrost, glacier mass balance, seasonal snow, surface energy balance) have been downscaled from the ERA-40 and ERA-Interim reanalyses using methodology described in the accompanying paper. The gridded dataset has a horizontal resolution of 1 km and covers the entire Svalbard archipelago. The data have a temporal resolution of 6 h and cover the entire ERA-40 period (1957–2002) and the ERA-Interim period (1979–2017).
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.
Aynom T. Teweldebrhan, John F. Burkhart, and Thomas V. Schuler
Hydrol. Earth Syst. Sci., 22, 5021–5039, https://doi.org/10.5194/hess-22-5021-2018, https://doi.org/10.5194/hess-22-5021-2018, 2018
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Christopher J. L. D'Amboise, Karsten Müller, Laurent Oxarango, Samuel Morin, and Thomas V. Schuler
Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, https://doi.org/10.5194/gmd-10-3547-2017, 2017
Short summary
Short summary
We present a new water percolation routine added to the Crocus model. The new routine is physically based, describing motion of water through a layered snowpack considering capillary-driven and gravity flow. We tested the routine on two data sets. Wet-snow layers were able to reach higher saturations than the empirical routine. Meaningful applicability is limited until new and better parameterizations of water retention are developed, and feedbacks are adjusted to handle higher saturations.
Thomas Schellenberger, Thorben Dunse, Andreas Kääb, Thomas Vikhamar Schuler, Jon Ove Hagen, and Carleen H. Reijmer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-5, https://doi.org/10.5194/tc-2017-5, 2017
Preprint withdrawn
Short summary
Short summary
Basin-3, NE-Svalbard, was still surging with 10 m d-1 in July 2016. After a speed peak of 18.8 m d-1 in Dec 2012/Jan 2013, speed-ups are overlying the fast flow every summer. The glacier is massively calving icebergs (5.2 Gt yr-1 ~ 2 L drinking water for every human being daily!) which in the same order of magnitude as all other Svalbard glaciers together.
Since autumn 2015 also Basin-2 is surging with maximum velocities of 8.7 m d-1, an advance of more than 2 km and a mass loss of 0.7 Gt yr-1.
Torbjørn Ims Østby, Thomas Vikhamar Schuler, Jon Ove Hagen, Regine Hock, Jack Kohler, and Carleen H. Reijmer
The Cryosphere, 11, 191–215, https://doi.org/10.5194/tc-11-191-2017, https://doi.org/10.5194/tc-11-191-2017, 2017
Short summary
Short summary
We present modelled climatic mass balance for all glaciers in Svalbard for the period 1957–2014 at 1 km resolution using a coupled surface energy balance and snowpack model, thereby closing temporal and spatial gaps in direct and geodetic mass balance estimates.
Supporting previous studies, our results indicate increased mass loss over the period.
A detailed analysis of the involved energy fluxes reveals that increased mass loss is caused by atmospheric warming further amplified by feedbacks.
Kjersti Gisnås, Sebastian Westermann, Thomas Vikhamar Schuler, Kjetil Melvold, and Bernd Etzelmüller
The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, https://doi.org/10.5194/tc-10-1201-2016, 2016
Short summary
Short summary
In wind exposed areas snow redistribution results in large spatial variability in ground temperatures. In these areas, the ground temperature of a grid cell must be determined based on the distribution, and not the average, of snow depths. We employ distribution functions of snow in a regional permafrost model, showing highly improved representation of ground temperatures. By including snow distributions, we find the permafrost area to be nearly twice as large as what is modelled without.
Kjetil S. Aas, Thorben Dunse, Emily Collier, Thomas V. Schuler, Terje K. Berntsen, Jack Kohler, and Bartłomiej Luks
The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, https://doi.org/10.5194/tc-10-1089-2016, 2016
Short summary
Short summary
A high-resolution, coupled atmosphere--climatic mass balance (CMB) model is applied to Svalbard for the period 2003 to 2013. The mean CMB during this period is negative but displays large spatial and temporal variations. Comparison with observations on different scales shows a good overall model performance except for one particular glacier, where wind strongly affects the spatial patterns of CMB. The model also shows considerable sensitivity to model resolution, especially on local scales.
L. Gray, D. Burgess, L. Copland, M. N. Demuth, T. Dunse, K. Langley, and T. V. Schuler
The Cryosphere, 9, 1895–1913, https://doi.org/10.5194/tc-9-1895-2015, https://doi.org/10.5194/tc-9-1895-2015, 2015
Short summary
Short summary
We show that the Cryosat (CS) radar altimeter can measure elevation change on a variety of Arctic ice caps. With the frequent coverage of Cryosat it is even possible to track summer surface height loss due to extensive melt; no other satellite altimeter has been able to do this. However, we also show that under cold conditions there is a bias between the surface and Cryosat detected elevation which varies with the conditions of the upper snow and firn layers.
S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller
The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015, https://doi.org/10.5194/tc-9-1303-2015, 2015
Short summary
Short summary
We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, https://doi.org/10.5194/tc-9-197-2015, 2015
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, https://doi.org/10.5194/tc-8-2063-2014, 2014
M. Engelhardt, T. V. Schuler, and L. M. Andreassen
Hydrol. Earth Syst. Sci., 18, 511–523, https://doi.org/10.5194/hess-18-511-2014, https://doi.org/10.5194/hess-18-511-2014, 2014
S. Westermann, T. V. Schuler, K. Gisnås, and B. Etzelmüller
The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, https://doi.org/10.5194/tc-7-719-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Glacier Hydrology
Hydrological response of Andean catchments to recent glacier mass loss
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast Greenland
Characterizing sub-glacial hydrology using radar simulations
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
A conceptual model for glacial lake bathymetric distribution
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 1: Steady states and friction laws
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 2: A dynamic viscoelastic model
The impact of surface melt rate and catchment characteristics on Greenland Ice Sheet moulin inputs
Modeling saline fluid flow through subglacial ice-walled channels and the impact of density on fluid flux
Evaporation over a glacial lake in Antarctica
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Accumulation of legacy fallout radionuclides in cryoconite on Isfallsglaciären (Arctic Sweden) and their downstream spatial distribution
Drainage of an ice-dammed lake through a supraglacial stream: hydraulics and thermodynamics
Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Geophysical constraints on the properties of a subglacial lake in northwest Greenland
Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls
Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period 1998–2019
An analysis of instabilities and limit cycles in glacier-dammed reservoirs
Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Katrina Lutz, Lily Bever, Christian Sommer, Angelika Humbert, Mirko Scheinert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1244, https://doi.org/10.5194/egusphere-2024-1244, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding the amount of water lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary
Short summary
Detailed glacial lake bathymetry surveys are essential for accurate glacial lake outburst flood (GLOF) simulation and risk assessment. We creatively developed a conceptual model for glacial lake bathymetric distribution. The basic idea is that the statistical glacial lake volume–area curves conform to a power-law relationship indicating that the idealized geometric shape of the glacial lake basin should be hemispheres or cones.
Christian Schoof
The Cryosphere, 17, 4797–4815, https://doi.org/10.5194/tc-17-4797-2023, https://doi.org/10.5194/tc-17-4797-2023, 2023
Short summary
Short summary
Computational models that seek to predict the future behaviour of ice sheets and glaciers typically rely on being able to compute the rate at which a glacier slides over its bed. In this paper, I show that the degree to which the glacier bed is
hydraulically connected(how easily water can flow along the glacier bed) plays a central role in determining how fast ice can slide.
Christian Schoof
The Cryosphere, 17, 4817–4836, https://doi.org/10.5194/tc-17-4817-2023, https://doi.org/10.5194/tc-17-4817-2023, 2023
Short summary
Short summary
The subglacial drainage of meltwater plays a major role in regulating glacier and ice sheet flow. In this paper, I construct and solve a mathematical model that describes how connections are made within the subglacial drainage system. This will aid future efforts to predict glacier response to surface melt supply.
Tim Hill and Christine F. Dow
The Cryosphere, 17, 2607–2624, https://doi.org/10.5194/tc-17-2607-2023, https://doi.org/10.5194/tc-17-2607-2023, 2023
Short summary
Short summary
Water flow across the surface of the Greenland Ice Sheet controls the rate of water flow to the glacier bed. Here, we simulate surface water flow for a small catchment on the southwestern Greenland Ice Sheet. Our simulations predict significant differences in the form of surface water flow in high and low melt years depending on the rate and intensity of surface melt. These model outputs will be important in future work assessing the impact of surface water flow on subglacial water pressure.
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
EGUsphere, https://doi.org/10.5194/egusphere-2023-792, https://doi.org/10.5194/egusphere-2023-792, 2023
Short summary
Short summary
Water in some glacier environments contains salt which increases the density of the fluid and decreases the freezing point of the fluid. As a result, hypersaline lakes can exist in places where freshwater cannot and can contain unique microbiological communities. We model the flow of saline fluid from a subglacial lake through a channel at the glacier bed. The results suggest that fluid with higher salinity reach higher discharge rates compared to fresh water due to increased fluid density.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Fabiola Banfi and Carlo De Michele
The Cryosphere, 16, 1031–1056, https://doi.org/10.5194/tc-16-1031-2022, https://doi.org/10.5194/tc-16-1031-2022, 2022
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modelling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between April and September since higher temperatures protect snow from erosion. We also compared modelled and observed firn density, obtaining a satisfying agreement.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Christian Schoof
The Cryosphere, 14, 3175–3194, https://doi.org/10.5194/tc-14-3175-2020, https://doi.org/10.5194/tc-14-3175-2020, 2020
Short summary
Short summary
Glacier lake outburst floods are major glacial hazards in which ice-dammed reservoirs rapidly drain, often in a recurring fashion. The main flood phase typically involves a growing channel being eroded into ice by water flow. What is poorly understood is how that channel first comes into being. In this paper, I investigate how an under-ice drainage system composed of small, naturally occurring voids can turn into a channel and how this can explain the cyclical behaviour of outburst floods.
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Short summary
This paper models how water flows beneath a large Greenlandic glacier and how the structure of the drainage system it flows in changes over time. We also look at how this affects melting driven by freshwater plumes at the glacier front, as well as the implications for glacier flow and sea-level rise. We find an active drainage system and plumes exist year round, contradicting previous assumptions and suggesting more melting may not slow the glacier down, unlike at other sites in Greenland.
Camilo Rada and Christian Schoof
The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, https://doi.org/10.5194/tc-12-2609-2018, 2018
Short summary
Short summary
We analyse a large glacier borehole pressure dataset and provide a holistic view of the observations, suggesting a consistent picture of the evolution of the subglacial drainage system. Some aspects are consistent with the established understanding and others ones are not. We propose that most of the inconsistencies arise from the capacity of some areas of the bed to become hydraulically isolated. We present an adaptation of an existing drainage model that incorporates this phenomena.
Cited articles
AMAP: Snow, Water, Ice and Permafrost in the Arctic
(SWIPA), Summary for Policy-makers, Arctic Monitoring & Assessment Programme, available at: https://www.amap.no/documents/download/2888/inline (last access: 10 August 2020), 2017.
Alley, R. B., Dupont, T. K., Parizek, B. R., and Anandakrishnan, S.: Access
of surface meltwater to beds of sub-freezing glaciers: preliminary insights,
Ann. Glaciol., 40, 8–14, 2005.
Andrews, L. C., Hoffman, M. J., Neumann, T. A., Catania, G. A., Lüthi,
M. P., Hawley, R. L., Schild, K. M., Ryser, C., and Morriss, B. F.: Seasonal
evolution of the subglacial hydrologic system modified by supraglacial lake
drainage in western Greenland, J. Geophys. Res.-Earth
Surf., 123, 1479–1496, 2018.
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls
drainage development beneath the Greenland ice sheet, J. Geophys. Res.-Earth Surf., 121, 2248–2269, 2016.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole,
A.: Seasonal evolution of subglacial drainage and acceleration in a
Greenland outlet glacier, Nat. Geosci., 3, 408–411, 2010.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, 2nd edn., Hodder
Education, London, UK, 802 pp., 2010.
Bindschadler, R.: The importance of pressurized subglacial water in
separation and sliding at the glacier bed, J. Glaciol., 29, 3–19,
1983.
Bingham, R. G., Nienow, P. W., and Sharp, M. J.: Intra-annual and
intra-seasonal flow dynamics of a High Arctic polythermal valley glacier,
Ann. Glaciol., 37, 181–188, 2003.
Björnsson, H., Gjessing, Y., Hamran, S.-E., Hagen, J. O., LiestøL,
O., Pálsson, F., and Erlingsson, B.: The thermal regime of sub-polar
glaciers mapped by multi-frequency radio-echo sounding, J. Glaciol., 42, 23–32, 1996.
Bouillon, A., Bernard, M., Gigord, P., Orsoni, A., Rudowski, V., and
Baudoin, A.: SPOT 5 HRS geometric performances: Using block adjustment as a
key issue to improve quality of DEM generation, ISPRS J.
Photogramm., 60, 134–146, 2006.
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015.
Carey, M., Molden, O. C., Rasmussen, M. B., Jackson, M., Nolin, A. W., and
Mark, B. G.: Impacts of glacier recession and declining meltwater on
mountain societies, Ann. Am. Assoc. Geogr., 107,
350–359, 2017.
Catania, G. A. and Neumann, T.: Persistent englacial drainage features in
the Greenland Ice Sheet, Geophys. Res. Lett., 37, L02501, https://doi.org/10.1029/2009GL041108, 2010.
Chandler, D., Wadham, J., Lis, G., Cowton, T., Sole, A., Bartholomew, I.,
Telling, J., Nienow, P., Bagshaw, E., and Mair, D.: Evolution of the
subglacial drainage system beneath the Greenland Ice Sheet revealed by
tracers, Nat. Geosci., 6, 195–198, 2013.
Christianson, K., Kohler, J., Alley, R. B., Nuth, C., and Van Pelt, W. J.:
Dynamic perennial firn aquifer on an Arctic glacier, Geophys. Res.
Lett., 42, 1418–1426, 2015.
Clason, C., Mair, D., Burgess, D., and Nienow, P.: Modelling the delivery of
supraglacial meltwater to the ice/bed interface: application to southwest
Devon Ice Cap, Nunavut, Canada, J. Glaciol., 58, 361–374, 2012.
Clason, C. C., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., Sole, A., Palmer, S., and Schwanghart, W.: Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland, The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, 2015.
Cook, S. J., Christoffersen, P., Todd, J., Slater, D., and Chauché, N.: Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland , The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, 2020.
Copland, L., Sharp, M. J., and Nienow, P. W.: Links between short-term
velocity variations and the subglacial hydrology of a predominantly cold
polythermal glacier, J. Glaciol., 49, 337–348, 2003.
Cowton, T., Nienow, P., Sole, A., Wadham, J., Lis, G., Bartholomew, I.,
Mair, D., and Chandler, D.: Evolution of drainage system morphology at a
land-terminating Greenlandic outlet glacier, J. Geophys. Res.-Earth Surf., 118, 29–41, 2013.
Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde,
D., and Bhatia, M. P.: Fracture propagation to the base of the Greenland Ice
Sheet during supraglacial lake drainage, Science, 320, 778–781, 2008.
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., and Nienow,
P. W.: The influence of hydrology on the dynamics of land-terminating
sectors of the Greenland Ice Sheet, Front. Earth Sci., 7, 10, https://doi.org/10.3389/feart.2019.00010, 2019.
de Fleurian, B., Gagliardini, O., Zwinger, T., Durand, G., Le Meur, E., Mair, D., and Råback, P.: A double continuum hydrological model for glacier applications, The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, 2014.
de Fleurian, B., Werder, M. A., Beyer, S., Brinkerhoff, D. J., Delaney, I.,
Dow, C. F., Downs, J., Gagliardini, O., Hoffman, M. J., and Hooke, R. L.:
SHMIP The subglacial hydrology model intercomparison Project, J. Glaciol., 64, 897–916, 2018.
Decaux, L., Grabiec, M., Ignatiuk, D., and Jania, J.: Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers, The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019, 2019.
Dow, C. F., Kulessa, B., Rutt, I., Tsai, V., Pimentel, S., Doyle, S., Van
As, D., Lindbäck, K., Pettersson, R., and Jones, G.: Modeling of
subglacial hydrological development following rapid supraglacial lake
drainage, J. Geophys. Res.-Earth Surf., 120, 1127–1147,
2015.
Dow, C. F., Werder, M., Babonis, G., Nowicki, S., Walker, R. T., Csathó,
B., and Morlighem, M.: Dynamics of active subglacial lakes in Recovery Ice
Stream, J. Geophys. Res.-Earth Surf., 123, 837–850, 2018.
Dow, C. F., McCormack, F., Young, D., Greenbaum, J., Roberts, J., and
Blankenship, D.: Totten Glacier subglacial hydrology determined from
geophysics and modeling, Earth Planet. Sc. Lett., 531, 115961, https://doi.org/10.1016/j.epsl.2019.115961,
2020.
Downs, J. Z., Johnson, J. V., Harper, J. T., Meierbachtol, T., and Werder,
M. A.: Dynamic hydraulic conductivity reconciles mismatch between modeled
and observed winter subglacial water pressure, J. Geophys. Res.-Earth Surf., 123, 818–836, 2018.
Dunse, T., Schuler, T. V., Hagen, J. O., and Reijmer, C. H.: Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements, The Cryosphere, 6, 453–466, https://doi.org/10.5194/tc-6-453-2012, 2012.
Dunse, T., Schellenberger, T., Hagen, J. O., Kääb, A., Schuler, T. V., and Reijmer, C. H.: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt, The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, 2015.
Everett, A., Kohler, J., Sundfjord, A., Kovacs, K. M., Torsvik, T.,
Pramanik, A., Boehme, L., and Lydersen, C.: Subglacial discharge plume
behaviour revealed by CTD-instrumented ringed seals, Sci. Rep., 8,
1–10, 2018.
Flowers, G. E. and Clarke, G. K.: A multicomponent coupled model of glacier
hydrology 1. Theory and synthetic examples, J. Geophys. Res.-Sol. Ea., 107, 2287, https://doi.org/10.1029/2001JB001122, 2002.
Flowers, G. E.: Modelling water flow under glaciers and ice sheets,
P. Roy. Soc. A-Math. Phy., 471, 20140907, https://doi.org/10.1098/rspa.2014.0907, 2015.
Fountain, A. G., Campbell, J. L., Schuur, E. A., Stammerjohn, S. E.,
Williams, M. W., and Ducklow, H. W.: The disappearing cryosphere: impacts
and ecosystem responses to rapid cryosphere loss, BioScience, 62, 405–415,
2012.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt
over decadal timescales on land-terminating Greenland-type outlet glaciers,
J. Glaciol., 64, 700–710, 2018.
Gulley, J., Benn, D., Müller, D., and Luckman, A.: A cut-and-closure
origin for englacial conduits in uncrevassed regions of polythermal
glaciers, J. Glaciol., 55, 66–80, 2009a.
Gulley, J., Benn, D., Screaton, E., and Martin, J.: Mechanisms of englacial
conduit formation and their implications for subglacial recharge, Quatern.
Sci. Rev., 28, 1984–1999, 2009b.
Gulley, J., Grabiec, M., Martin, J., Jania, J., Catania, G., and Glowacki,
P.: The effect of discrete recharge by moulins and heterogeneity in
flow-path efficiency at glacier beds on subglacial hydrology, J. Glaciol., 58, 926–940, 2012.
Hagen, J., Melvold, K., Eiken, T., Isaksson, E., and Lefauconnier, B.: Mass
balance methods on Kongsvegen, Svalbard, Geogr. Ann. A, 81, 593–601, 1999.
Hagen, J. O., Eiken, T., Kohler, J., and Melvold, K.: Geometry changes on
Svalbard glaciers: mass-balance or dynamic response?, Ann. Glaciol.,
42, 255–261, 2005.
Hewitt, I. J.: Modelling distributed and channelized subglacial drainage:
the spacing of channels, J. Glaciol., 57, 302–314, 2011.
Hewitt, I. J.: Seasonal changes in ice sheet motion due to melt water
lubrication, Earth Planet. Sc. Lett., 371, 16–25, 2013.
Hoffman, M. and Price, S.: Feedbacks between coupled subglacial hydrology
and glacier dynamics, J. Geophys. Res.-Earth Surf., 119,
414–436, 2014.
Hoffman, M., Perego, M., Andrews, L. C., Price, S. F., Neumann, T. A.,
Johnson, J. V., Catania, G., and Lüthi, M. P.: Widespread moulin
formation during supraglacial lake drainages in Greenland, Geophys.
Res. Lett., 45, 778–788, 2018.
Horgan, H. J., Anderson, B., Alley, R. B., Chamberlain, C. J., Dykes, R.,
Kehrl, L. M., and Townend, J.: Glacier velocity variability due to
rain-induced sliding and cavity formation, Earth Planet. Sc.
Lett., 432, 273–282, 2015.
How, P., Benn, D. I., Hulton, N. R. J., Hubbard, B., Luckman, A., Sevestre, H., van Pelt, W. J. J., Lindbäck, K., Kohler, J., and Boot, W.: Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities, The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, 2017.
Iken, A. and Bindschadler, R. A.: Combined measurements of subglacial water
pressure and surface velocity of Findelengletscher, Switzerland: conclusions
about drainage system and sliding mechanism, J. Glaciol., 32,
101–119, 1986.
Iken, A. and Truffe, M.: The relationship between subglacial water pressure
and velocity of Findelengletscher, Switzerland, during its advance and
retreat, J. Glaciol., 43, 328–338, 1997.
Iken, A., Röthlisberger, H., Flotron, A., and Haeberli, W.: The uplift
of Unteraargletscher at the beginning of the melt season – a consequence of
water storage at the bed?, J. Glaciol., 29, 28–47, 1983.
Joughin, I., Das, S. B., Flowers, G. E., Behn, M. D., Alley, R. B., King, M. A., Smith, B. E., Bamber, J. L., van den Broeke, M. R., and van Angelen, J. H.: Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability, The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, 2013.
Kääb, A., Lefauconnier, B., and Melvold, K.: Flow field of
Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data, Ann. Glaciol., 42, 7–13, 2005.
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of
the basal water conduit system, J. Geophys. Res.-Sol.
Ea., 92, 9083–9100, 1987.
Kehrl, L. M., Hawley, R. L., Powell, R. D., and Brigham-Grette, J.:
Glacimarine sedimentation processes at Kronebreen and Kongsvegen, Svalbard,
J. Glaciol., 57, 841–847, 2011.
König, M., Kohler, J., and Nuth, C.: Glacier area outlines–Svalbard
[Data set], Norwegian Polar Institute, https://doi.org/10.21334/npolar.2013.89f430f8, 2013.
Korona, J., Berthier, E., Bernard, M., Rémy, F., and Thouvenot, E.:
SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and
topographies during the fourth International Polar Year (2007–2009), ISPRS
J. Photogramm., 64, 204–212, 2009.
Koziol, C., Arnold, N., Pope, A., and Colgan, W.: Quantifying supraglacial
meltwater pathways in the Paakitsoq region, West Greenland, J. Glaciol., 63, 464–476, 2017.
Koziol, C. P. and Arnold, N.: Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet, The Cryosphere, 12, 971–991, https://doi.org/10.5194/tc-12-971-2018, 2018.
Lefauconnier, B.: Fluctuations glaciaires dans le Kongsfjord, bai du Roi, 79
N, Spitsbergen, analyses et conseqences (Glacier fluctuations in
Kongsfjorden, 79 N, Spitsbergen, analyses and consequences), Unpublished
thesis, Universite de Grenoble, 1987.
Lefauconnier, B., Hagen, J. O., and Rudant, J. P.: Flow speed and calving
rate of Kongsbreen glacier, Svalbard, using SPOT images, Polar Res., 13,
59–65, 1994a.
Lefauconnier, B., Hagen, J. O., Pinglot, J. F., and Pourchet, M.:
Mass-balance estimates on the glacier complex Kongsvegen and Sveabreen,
Spitsbergen, Svalbard, using radioactive layers, J. Glaciol., 40,
368–376, 1994b.
Liestøl, O.: The glaciers in the Kongsfjorden area, Spitsbergen, Norsk Geogr. Tidsskr., 42, 231–238, 1988.
Lindbäck, K., Kohler, J., Pettersson, R., Nuth, C., Langley, K., Messerli, A., Vallot, D., Matsuoka, K., and Brandt, O.: Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard, Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, 2018a.
Lliboutry, L.: General theory of subglacial cavitation and sliding of
temperate glaciers, J. Glaciol., 7, 21–58, 1968.
Mair, D., Nienow, P., Willis, I., and Sharp, M.: Spatial patterns of glacier
motion during a high-velocity event: Haut Glacier d'Arolla, Switzerland,
J. Glaciol., 47, 9–20, 2001.
Meierbachtol, T., Harper, J., and Humphrey, N.: Basal drainage system
response to increasing surface melt on the Greenland ice sheet, Science,
341, 777–779, 2013.
Melvold, K. and Hagen, J. O.: Evolution of a surge-type glacier in its
quiescent phase: Kongsvegen, Spitsbergen, 1964–95, J. Glaciol.,
44, 394–404, 1998.
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E.,
Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D.,
and Hannah, D. M.: Glacier shrinkage driving global changes in downstream
systems, P. Natl. Acade. Sci., 114, 9770–9778,
2017.
Moon, T., Joughin, I., Smith, B., Van Den Broeke, M. R., Van De Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 7209–7216, 2014.
Nienow, P., Sharp, M., and Willis, I.: Seasonal changes in the morphology of
the subglacial drainage system, Haut Glacier d'Arolla, Switzerland, Earth
Surf. Proc. Landf., 23, 825–843, 1998.
Nuth, C., Schuler, T. V., Kohler, J., Altena, B., and Hagen, J. O.:
Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic
elevation changes and mass-balance modeling, J. Glaciol., 58,
119–133, 2012.
Nuth, C., Gilbert, A., Köhler, A., McNabb, R., Schellenberger, T.,
Sevestre, H., Weidle, C., Girod, L., Luckman, A., and Kääb, A.:
Dynamic vulnerability revealed in the collapse of an Arctic tidewater
glacier, Sci. Rep., 9, 1–13, 2019.
Pfeffer, W. T., Meier, M. F., and Illangasekare, T. H.: Retention of
Greenland runoff by refreezing: implications for projected future sea level
change, J. Geophys. Res.-Oceans, 96, 22117–22124, 1991.
Pimentel, S. and Flowers, G. E.: A numerical study of hydrologically driven
glacier dynamics and subglacial flooding, P. Roy. Soc. A-Math. Phy., 467, 537–558, 2011.
Poinar, K., Joughin, I., Lilien, D., Brucker, L., Kehrl, L., and Nowicki,
S.: Drainage of Southeast Greenland firn aquifer water through crevasses to
the bed, Front. Earth Sci., 5, 5, https://doi.org/10.3389/feart.2017.00005, 2017.
Poinar, K., Dow, C. F., and Andrews, L. C.: Long-Term Support of an Active
Subglacial Hydrologic System in Southeast Greenland by Firn Aquifers,
Geophys. Res. Lett., 46, 4772–4781, 2019.
Pörtner, H., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., and Petzold, J.:
IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, IPCC, 2019.
Röthlisberger, H.: Water pressure in intra-and subglacial channels,
J. Glaciol., 11, 177–203, 1972.
Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking, The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, 2015.
Schild, K. M., Hawley, R. L., and Morriss, B. F.: Subglacial hydrology at
Rink Isbræ, West Greenland inferred from sediment plume appearance,
Ann. Glaciol., 57, 118–127, 2016.
Scholzen, C.: Model output supporting “Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard” [Data set], Zenodo, https://doi.org/10.5281/zenodo.4680908, 2021.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability,
Nature, 468, 803–806, 2010.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Sevestre, H., Benn, D. I., Hulton, N. R., and Bælum, K.: Thermal
structure of Svalbard glaciers and implications for thermal switch models of
glacier surging, J. Geophys. Res.-Earth Surf., 120,
2220–2236, 2015.
Slater, D., Nienow, P., Sole, A., Cowton, T., Mottram, R., Langen, P., and
Mair, D.: Spatially distributed runoff at the grounding line of a large
Greenlandic tidewater glacier inferred from plume modelling, J. Glaciol., 63, 309–323, 2017.
Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I., King, M.,
Burke, M. J., and Joughin, I.: Seasonal speedup of a Greenland
marine-terminating outlet glacier forced by surface melt–induced changes in
subglacial hydrology, J. Geophys. Res.-Earth Surf., 116, F03014, https://doi.org/10.1029/2010JF001948,
2011.
Sugiyama, S. and Gudmundsson, G. H.: Short-term variations in glacier flow
controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps,
Switzerland, J. Glaciol., 50, 353–362, 2004.
Sund, M., Eiken, T., and Rolstad Denby, C.: Velocity structure, front position changes and calving of the tidewater glacier Kronebreen, Svalbard, The Cryosphere Discuss., 5, 41–73, https://doi.org/10.5194/tcd-5-41-2011, 2011.
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and
Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by
efficient subglacial drainage, Nature, 469, 521–524, 2011.
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B.,
Tverberg, V., Gerland, S., Børre Ørbæk, J., Bischof, K., Papucci,
C., and Zajaczkowski, M.: The physical environment of
Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard, Polar
Res., 21, 133–166, 2002.
Trusel, L. D., Powell, R., Cumpston, R., and Brigham-Grette, J.: Modern
glacimarine processes and potential future behaviour of Kronebreen and
Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard,
Geol. Soc. Sp., 344, 89–102, 2010.
Vallot, D., Pettersson, R., Luckman, A., Benn, D. I., Zwinger, T., Van Pelt,
W. J., Kohler, J., Schäfer, M., Claremar, B., and Hulton, N. R.: Basal
dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard:
non-local spatio-temporal response to water input, J. Glaciol.,
63, 1012–1024, 2017.
van der Veen, C. J.: Fracture propagation as means of rapidly transferring
surface meltwater to the base of glaciers, Geophys. Res. Lett., 34, L01501, https://doi.org/10.1029/2006GL028385,
2007.
Van Pelt, W. and Kohler, J.: Modelling the long-term mass balance and firn
evolution of glaciers around Kongsfjorden, Svalbard, J. Glaciol.,
61, 731–744, 2015.
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019.
Van Pelt, W. J., Pohjola, V. A., and Reijmer, C. H.: The changing impact of
snow conditions and refreezing on the mass balance of an idealized Svalbard
glacier, Front. Earth Science, 4, 102, https://doi.org/10.3389/feart.2016.00102, 2016.
Vincent, W. F., Callaghan, T. V., Dahl-Jensen, D., Johansson, M., Kovacs, K.
M., Michel, C., Prowse, T., Reist, J. D., and Sharp, M.: Ecological
implications of changes in the Arctic cryosphere, Ambio, 40, 87–99, 2011.
Walder, J. S. and Fowler, A.: Channelized subglacial drainage over a
deformable bed, J. Glaciol., 40, 3–15, 1994.
Werder, M. A., Schuler, T. V., and Funk, M.: Short term variations of tracer transit speed on alpine glaciers, The Cryosphere, 4, 381–396, https://doi.org/10.5194/tc-4-381-2010, 2010.
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J. Geophys. Res.-Earth Surf., 118, 2140–2158, 2013.
Wouters, B., Gardner, A. S., and Moholdt, G.: Global glacier mass loss
during the GRACE satellite mission (2002–2016), Front. Earth Sci.,
7, 96, https://doi.org/10.3389/feart.2019.00096, 2019.
Wyatt, F. R. and Sharp, M. J.: Linking surface hydrology to flow regimes
and patterns of velocity variability on Devon Ice Cap, Nunavut, J. Glaciol., 61, 387–399, 2015.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen,
K.: Surface melt-induced acceleration of Greenland ice-sheet flow, Science,
297, 218–222, 2002.
Short summary
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to investigate how different processes of surface-to-bed meltwater transfer affect subglacial hydraulic conditions. The latter are important for the sliding motion of glaciers, which in some cases exhibit huge variations. Our findings indicate that the glaciers in our study area undergo substantial sliding because water is poorly evacuated from their base, with limited influence from the surface hydrology.
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to...