Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Tenglong Shi
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Jiecan Cui
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Yang Chen
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
Related authors
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021, https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
Wei Pu, Zhouxing Zou, Weihao Wang, David Tanner, Zhe Wang, and Tao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-252, https://doi.org/10.5194/amt-2020-252, 2020
Revised manuscript not accepted
Short summary
Short summary
The hydroxyl radical (OH) is responsible for the degradation of trace gases and plays key roles in major environmental issues such as photochemical pollution. However, the measurement of atmospheric OH radical is a huge challenge due to its high reactivity. Our study provides systematic optimization of a chemical ionization mass spectrometer (CIMS) for OH measurement as a reference for other CIMS users. The ambient result demonstrates the capability of the CIMS for ambient OH measurement.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Wei Pu, Xin Wang, Hailun Wei, Yue Zhou, Jinsen Shi, Zhiyuan Hu, Hongchun Jin, and Quanliang Chen
The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, https://doi.org/10.5194/tc-11-1213-2017, 2017
Short summary
Short summary
We conducted a large field campaign to collect snow samples in Xinjiang. We measured insoluble light-absorbing particles with estimated black carbon concentrations of 10–150 ngg-1. We found a probable shift in emission sources with the progression of winter and dominated contributions of BC and OC to light absorption. A PMF model indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.
Xin Wang, Wei Pu, Yong Ren, Xuelei Zhang, Xueying Zhang, Jinsen Shi, Hongchun Jin, Mingkai Dai, and Quanliang Chen
Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, https://doi.org/10.5194/acp-17-2279-2017, 2017
Short summary
Short summary
A 2014 snow survey was performed across northeastern China to analyze light absorption of ILAPs in seasonal snow, and modeling studies were conducted to compare snow albedo reduction due to assumptions of internal–external mixing of BC in snow and different snow grain shapes. The results show that the simulated snow albedos from both SAMDS and SNICAR agree well with the observed values at low ILAP mixing ratios, but they tend to be higher than surface observations at high ILAP mixing ratios.
Xuezhe Xu, Weixiong Zhao, Qilei Zhang, Shuo Wang, Bo Fang, Weidong Chen, Dean S. Venables, Xinfeng Wang, Wei Pu, Xin Wang, Xiaoming Gao, and Weijun Zhang
Atmos. Chem. Phys., 16, 6421–6439, https://doi.org/10.5194/acp-16-6421-2016, https://doi.org/10.5194/acp-16-6421-2016, 2016
Short summary
Short summary
We report on the field measurement of the optical properties and chemical composition of PM1.0 particles in a suburban environment in Beijing during the winter coal heating season. Organic mass was the largest contributor to the total extinction of PM1.0, while EC, owing to its high absorption efficiency, contributed appreciably to PM1.0 extinction and should be a key target to air quality controls. Non-BC absorption from secondary organic aerosol also contributes to particle absorption.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021, https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
Wei Pu, Zhouxing Zou, Weihao Wang, David Tanner, Zhe Wang, and Tao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-252, https://doi.org/10.5194/amt-2020-252, 2020
Revised manuscript not accepted
Short summary
Short summary
The hydroxyl radical (OH) is responsible for the degradation of trace gases and plays key roles in major environmental issues such as photochemical pollution. However, the measurement of atmospheric OH radical is a huge challenge due to its high reactivity. Our study provides systematic optimization of a chemical ionization mass spectrometer (CIMS) for OH measurement as a reference for other CIMS users. The ambient result demonstrates the capability of the CIMS for ambient OH measurement.
Dandan Zhao, Guangjing Liu, Jinyuan Xin, Jiannong Quan, Yuesi Wang, Xin Wang, Lindong Dai, Wenkang Gao, Guiqian Tang, Bo Hu, Yongxiang Ma, Xiaoyan Wu, Lili Wang, Zirui Liu, and Fangkun Wu
Atmos. Chem. Phys., 20, 4575–4592, https://doi.org/10.5194/acp-20-4575-2020, https://doi.org/10.5194/acp-20-4575-2020, 2020
Short summary
Short summary
Under strong atmospheric oxidization capacity, haze pollution in the summer in Beijing was the result of the synergistic effect of the physicochemical process in the atmospheric boundary layer (ABL). With the premise of an extremely stable ABL structure, the formation of secondary aerosols dominated by nitrate was quite intense, driving the outbreak of haze pollution.
Xin Wang, Xueying Zhang, and Wenjing Di
Atmos. Meas. Tech., 13, 39–52, https://doi.org/10.5194/amt-13-39-2020, https://doi.org/10.5194/amt-13-39-2020, 2020
Short summary
Short summary
We developed an improved two-sphere integration (TSI) technique to quantify black carbon (BC) concentrations in the atmosphere and seasonal snow. The major advantage of this system is that it combines two distinct integrated spheres to reduce the scattering effect due to light-absorbing particles and thus provides accurate determinations of total light absorption from BC collected on Nuclepore filters.
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019, https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
Short summary
Dust storms are thought to be a worldwide societal issue, and numerical modeling is an effective way to help us to predict dust events. Here we present the first comprehensive evaluation of dust emission modules in four commonly used air quality models for northeastern China. The results showed that most of these models were able to capture this dust event and indicated the dust source maps should be carefully selected or replaced with a new one that is constructed with local data.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Xin Wang, Hailun Wei, Jun Liu, Baiqing Xu, Mo Wang, Mingxia Ji, and Hongchun Jin
The Cryosphere, 13, 309–324, https://doi.org/10.5194/tc-13-309-2019, https://doi.org/10.5194/tc-13-309-2019, 2019
Short summary
Short summary
A large survey on measuring optical and chemical properties of insoluble light-absorbing impurities (ILAPs) from seven glaciers was conducted on the Tibetan Plateau (TP) during 2013–2015. The results indicated that the mixing ratios of black carbon (BC), organic carbon (OC), and iron (Fe) all showed a tendency to decrease from north to south, and the industrial pollution (33.1 %), biomass and biofuel burning (29.4 %), and soil dust (37.5 %) were the major sources of the ILAPs on the TP.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Xin Wang, Hui Wen, Jinsen Shi, Jianrong Bi, Zhongwei Huang, Beidou Zhang, Tian Zhou, Kaiqi Fu, Quanliang Chen, and Jinyuan Xin
Atmos. Chem. Phys., 18, 2119–2138, https://doi.org/10.5194/acp-18-2119-2018, https://doi.org/10.5194/acp-18-2119-2018, 2018
Short summary
Short summary
A ground-based mobile laboratory was deployed near the dust source regions over northwestern China.
We not only captured natural dust but also characterized the properties of anthropogenic soil dust produced by agricultural cultivations.
The results indicate that large differences were found between the optical and microphysical properties of anthropogenic and natural dust.
Jianrong Bi, Jianping Huang, Jinsen Shi, Zhiyuan Hu, Tian Zhou, Guolong Zhang, Zhongwei Huang, Xin Wang, and Hongchun Jin
Atmos. Chem. Phys., 17, 7775–7792, https://doi.org/10.5194/acp-17-7775-2017, https://doi.org/10.5194/acp-17-7775-2017, 2017
Short summary
Short summary
We conducted a field campaign on exploring dust aerosol in Dunhuang farmland nearby Gobi deserts. The anthropogenic dust produced by agricultural cultivations exerted a significant superimposed effect on elevated dust loadings. Strong south wind in daytime scavenged the pollution and weak northeast wind at night favorably accumulated air pollutants near the surface. The local emissions remarkably modified the absorptive and optical characteristics of mineral dust in desert source region.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Wei Pu, Xin Wang, Hailun Wei, Yue Zhou, Jinsen Shi, Zhiyuan Hu, Hongchun Jin, and Quanliang Chen
The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, https://doi.org/10.5194/tc-11-1213-2017, 2017
Short summary
Short summary
We conducted a large field campaign to collect snow samples in Xinjiang. We measured insoluble light-absorbing particles with estimated black carbon concentrations of 10–150 ngg-1. We found a probable shift in emission sources with the progression of winter and dominated contributions of BC and OC to light absorption. A PMF model indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.
Xin Wang, Wei Pu, Yong Ren, Xuelei Zhang, Xueying Zhang, Jinsen Shi, Hongchun Jin, Mingkai Dai, and Quanliang Chen
Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, https://doi.org/10.5194/acp-17-2279-2017, 2017
Short summary
Short summary
A 2014 snow survey was performed across northeastern China to analyze light absorption of ILAPs in seasonal snow, and modeling studies were conducted to compare snow albedo reduction due to assumptions of internal–external mixing of BC in snow and different snow grain shapes. The results show that the simulated snow albedos from both SAMDS and SNICAR agree well with the observed values at low ILAP mixing ratios, but they tend to be higher than surface observations at high ILAP mixing ratios.
Xuelei Zhang, Daniel Q. Tong, Guangjian Wu, Xin Wang, Aijun Xiu, Yongxiang Han, Tianli Xu, Shichun Zhang, and Hongmei Zhao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-681, https://doi.org/10.5194/acp-2016-681, 2016
Revised manuscript has not been submitted
Short summary
Short summary
More detailed knowledge regarding recent variations in the characteristics of East Asian dust events and dust sources can effectively improve regional dust modeling and forecasts. Here we reassess the accuracy of previous predictions of trends in dust variations in East Asia, and establish a relatively detailed inventory of dust events based on satellite observations from 2000 to 2015.
Xuezhe Xu, Weixiong Zhao, Qilei Zhang, Shuo Wang, Bo Fang, Weidong Chen, Dean S. Venables, Xinfeng Wang, Wei Pu, Xin Wang, Xiaoming Gao, and Weijun Zhang
Atmos. Chem. Phys., 16, 6421–6439, https://doi.org/10.5194/acp-16-6421-2016, https://doi.org/10.5194/acp-16-6421-2016, 2016
Short summary
Short summary
We report on the field measurement of the optical properties and chemical composition of PM1.0 particles in a suburban environment in Beijing during the winter coal heating season. Organic mass was the largest contributor to the total extinction of PM1.0, while EC, owing to its high absorption efficiency, contributed appreciably to PM1.0 extinction and should be a key target to air quality controls. Non-BC absorption from secondary organic aerosol also contributes to particle absorption.
Related subject area
Discipline: Snow | Subject: Snow Physics
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Spatial variation in the specific surface area of surface snow measured along the traverse route from the coast to Dome Fuji, Antarctica, during austral summer
Microstructure-based simulations of the viscous densification of snow and firn
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
A microstructure-based parameterization of the effective anisotropic elasticity tensor of snow, firn, and bubbly ice
Seismic attenuation in Antarctic firn
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Multiscale modeling of heat and mass transfer in dry snow: influence of the condensation coefficient and comparison with experiments
Heterogeneous grain growth and vertical mass transfer within a snow layer under a temperature gradient
Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube
Wind conditions for snow cornice formation in a wind tunnel
Stochastic analysis of micro-cone penetration tests in snow
A generalized photon-tracking approach to simulate spectral snow albedo and transmittance using X-ray microtomography and geometric optics
Coherent backscatter enhancement in bistatic Ku- and X-band radar observations of dry snow
Effect of snowfall on changes in relative seismic velocity measured by ambient noise correlation
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
Macroscopic water vapor diffusion is not enhanced in snow
Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model
A model for French-press experiments of dry snow compaction
Identification of blowing snow particles in images from a Multi-Angle Snowflake Camera
Modeling snow slab avalanches caused by weak-layer failure – Part 1: Slabs on compliant and collapsible weak layers
Modeling snow slab avalanches caused by weak-layer failure – Part 2: Coupled mixed-mode criterion for skier-triggered anticracks
Modeling the evolution of the structural anisotropy of snow
Motion of dust particles in dry snow under temperature gradient metamorphism
Influence of light-absorbing particles on snow spectral irradiance profiles
Saharan dust events in the European Alps: role in snowmelt and geochemical characterization
On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow
The influence of layering and barometric pumping on firn air transport in a 2-D model
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024, https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Short summary
The topmost layer of a snowpack forms the interface to the atmosphere and is critical for the reflectance of solar radiation and avalanche formation. The effect of wind on the surface snow microstructure during precipitation events is poorly understood and quantified. We performed controlled lab experiments in a ring wind tunnel to systematically quantify the snow microstructure for different wind speeds, temperatures and precipitation intensities and to identify the relevant processes.
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024, https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
Short summary
We measured the snow specific surface area (SSA) at ~2150 surfaces between the coast near Syowa Station and Dome Fuji, East Antarctica, in summer 2021–2022. The observed SSA shows no elevation dependence between 15 and 500 km from the coast and increases toward the dome area beyond the range. SSA varies depending on surface morphologies and meteorological events. The spatial variation of SSA can be explained by snow metamorphism, snowfall frequency, and wind-driven inhibition of snow deposition.
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024, https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary
Short summary
Understanding the settling of snow under its own weight has applications from avalanche forecasts to ice core interpretations. We study how this settling can be modeled using 3D images of the internal structure of snow and ice deformation mechanics. We found that classical ice mechanics, as used, for instance, in glacier flow, explain the compaction of dense polar snow but not that of lighter seasonal snow. How, exactly, the ice deforms during light snow compaction thus remains an open question.
Anna Braun, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1653–1668, https://doi.org/10.5194/tc-18-1653-2024, https://doi.org/10.5194/tc-18-1653-2024, 2024
Short summary
Short summary
The specific surface of snow dictates key physical properties and continuously evolves in natural snowpacks. This is referred to as metamorphism. This work develops a rigorous physical model for this evolution, which is able to reproduce X-ray tomography measurements without using unphysical tuning parameters. Our results emphasize that snow crystal growth at the micrometer scale ultimately controls the pace of metamorphism.
Kavitha Sundu, Johannes Freitag, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1579–1596, https://doi.org/10.5194/tc-18-1579-2024, https://doi.org/10.5194/tc-18-1579-2024, 2024
Short summary
Short summary
Ice crystals often show a rod-like, vertical orientation in snow and firn; they are said to be anisotropic. The stiffness in the vertical direction therefore differs from the horizontal, which, for example, impacts the propagation of seismic waves. To quantify this anisotropy, we conducted finite-element simulations of 391 snow, firn, and ice core microstructures obtained from X-ray tomography. We then derived a parameterization that may be employed for advanced seismic studies in polar regions.
Stefano Picotti, José M. Carcione, and Mauro Pavan
The Cryosphere, 18, 169–186, https://doi.org/10.5194/tc-18-169-2024, https://doi.org/10.5194/tc-18-169-2024, 2024
Short summary
Short summary
A physical explanation of the seismic attenuation in the polar snow and ice masses is essential to gaining insight into the ice sheet and deeper geological formations. We estimate the P- and S-wave attenuation profiles of the Whillans Ice Stream from the spectral analysis of three-component active-source seismic data. The firn and ice quality factors are then modeled using a rock-physics theory that combines White's mesoscopic attenuation theory of interlayer flow with that of Biot/squirt flow.
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023, https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
Short summary
Snow acts as an insulating blanket on Arctic sea ice, keeping the underlying ice "warm", relative to the atmosphere. Knowing the snow's thermal conductivity is essential for understanding winter ice growth. During the MOSAiC expedition, we measured the thermal conductivity of snow. We found spatial and vertical variability to overpower any temporal variability or dependency on underlying ice type and the thermal resistance to be directly influenced by snow height.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-148, https://doi.org/10.5194/tc-2023-148, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Three different macroscopic heat and mass transfer models have been derived for a large range of condensation coefficient values by an upscaling method. A comprehensive evaluation of the models is presented based on experimental datasets and numerical examples. The models reproduce the trend of experimental temperature and density profiles, but underestimate the magnitude of the processes. Possible causes of these discrepancies and potential improvements for the models are suggested.
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 17, 3553–3573, https://doi.org/10.5194/tc-17-3553-2023, https://doi.org/10.5194/tc-17-3553-2023, 2023
Short summary
Short summary
This study presents two new experiments of temperature gradient metamorphism in a snow layer using tomographic time series and focusing on the vertical extent. The results highlight two little known phenomena: the development of morphological vertical heterogeneities from an initial uniform layer, which is attributed to the temperature range and the vapor pressure distribution, and the quantification of the mass loss at the base caused by the vertical vapor fluxes and the dry lower boundary.
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023, https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary
Short summary
The grain size of snow determines how light is reflected and other physical properties. The IceCube measures snow grain size at the specific near-infrared wavelength of 1320 nm. In our study, the preparation of snow samples for the IceCube creates a thin layer of small particles. Comparisons of the grain size with computed tomography, particle counting and numerical simulation confirm the aforementioned observation. We conclude that measurements at this wavelength underestimate the grain size.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Pyei Phyo Lin, Isabel Peinke, Pascal Hagenmuller, Matthias Wächter, M. Reza Rahimi Tabar, and Joachim Peinke
The Cryosphere, 16, 4811–4822, https://doi.org/10.5194/tc-16-4811-2022, https://doi.org/10.5194/tc-16-4811-2022, 2022
Short summary
Short summary
Characterization of layers of snowpack with highly resolved micro-cone penetration tests leads to detailed fluctuating signals. We used advanced stochastic analysis to differentiate snow types by interpreting the signals as a mixture of continuous and discontinuous random fluctuations. These two types of fluctuation seem to correspond to different mechanisms of drag force generation during the experiments. The proposed methodology provides new insights into the characterization of snow layers.
Theodore Letcher, Julie Parno, Zoe Courville, Lauren Farnsworth, and Jason Olivier
The Cryosphere, 16, 4343–4361, https://doi.org/10.5194/tc-16-4343-2022, https://doi.org/10.5194/tc-16-4343-2022, 2022
Short summary
Short summary
We present a radiative transfer model that uses ray tracing to determine optical properties from computer-generated 3D renderings of snow resolved at the microscale and to simulate snow spectral reflection and transmission for visible and near-infrared light. We expand ray-tracing techniques applied to sub-1 cm3 snow samples to model an entire snowpack column. The model is able to reproduce known snow surface optical properties, and simulations compare well against field observations.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021, https://doi.org/10.5194/tc-15-4381-2021, 2021
Short summary
Short summary
In this study on temperature gradient metamorphism in snow, we investigate the hypothesis that there exists a favourable crystal orientation relative to the temperature gradient. We measured crystallographic orientations of the grains and their microstructural evolution during metamorphism using in situ time-lapse diffraction contrast tomography. Faceted crystals appear during the evolution, and we observe higher sublimation–deposition rates for grains with their c axis in the horizontal plane.
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Short summary
The role of snow microstructure in snow optical properties is only partially understood despite the importance of snow optical properties for the Earth system. We present a dataset combining bidirectional reflectance measurements and 3D images of snow. We show that the snow reflectance is adequately simulated using the distribution of the ice chord lengths in the snow microstructure and that the impact of the morphological type of snow is especially important when ice is highly absorptive.
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021, https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary
Short summary
The thermal conductivity of snow is an important physical property governing the thermal regime of a snowpack and its substrate. We show that it strongly depends on the kinetics of water vapor sublimation and that previous experimental data suggest a rather fast kinetics. In such a case, neglecting water vapor leads to an underestimation of thermal conductivity by up to 50 % for light snow. Moreover, the diffusivity of water vapor in snow is then directly related to the thermal conductivity.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 389–406, https://doi.org/10.5194/tc-15-389-2021, https://doi.org/10.5194/tc-15-389-2021, 2021
Short summary
Short summary
There has been a long controversy to determine whether the effective diffusion coefficient of water vapor in snow is superior to that in free air. Using theory and numerical modeling, we show that while water vapor diffuses more than inert gases thanks to its interaction with the ice, the effective diffusion coefficient of water vapor in snow remains inferior to that in free air. This suggests that other transport mechanisms are responsible for the large vapor fluxes observed in some snowpacks.
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, https://doi.org/10.5194/tc-14-1651-2020, 2020
Short summary
Short summary
The effect of surface roughness on snow albedo is often overlooked,
although a small change in albedo may strongly affect the surface energy
budget. By carving artificial roughness in an initially smooth snowpack,
we highlight albedo reductions of 0.03–0.04 at 700 nm and 0.06–0.10 at 1000 nm. A model using photon transport is developed to compute albedo considering roughness and applied to understand the impact of roughness as a function of snow properties and illumination conditions.
Colin R. Meyer, Kaitlin M. Keegan, Ian Baker, and Robert L. Hawley
The Cryosphere, 14, 1449–1458, https://doi.org/10.5194/tc-14-1449-2020, https://doi.org/10.5194/tc-14-1449-2020, 2020
Short summary
Short summary
We describe snow compaction laboratory data with a new mathematical model. Using a compression device that is similar to a French press with snow instead of coffee grounds, Wang and Baker (2013) compacted numerous snow samples of different densities at a constant velocity to determine the force required for snow compaction. Our mathematical model for compaction includes airflow through snow and predicts the required force, in agreement with the experimental data.
Mathieu Schaer, Christophe Praz, and Alexis Berne
The Cryosphere, 14, 367–384, https://doi.org/10.5194/tc-14-367-2020, https://doi.org/10.5194/tc-14-367-2020, 2020
Short summary
Short summary
Wind and precipitation often occur together, making the distinction between particles coming from the atmosphere and those blown by the wind difficult. This is however a crucial task to accurately close the surface mass balance. We propose an algorithm based on Gaussian mixture models to separate blowing snow and precipitation in images collected by a Multi-Angle Snowflake Camera (MASC). The algorithm is trained and (positively) evaluated using data collected in the Swiss Alps and in Antarctica.
Philipp L. Rosendahl and Philipp Weißgraeber
The Cryosphere, 14, 115–130, https://doi.org/10.5194/tc-14-115-2020, https://doi.org/10.5194/tc-14-115-2020, 2020
Short summary
Short summary
Dry-snow slab avalanche release is preceded by a fracture process within the snowpack. Recognizing weak layer collapse as an integral part of the fracture process is crucial and explains phenomena such as whumpf sounds and remote triggering of avalanches from low-angle terrain. In this first part of the two-part work we propose a novel closed-form analytical model for a snowpack that provides a highly efficient and precise analysis of the mechanical response of a loaded snowpack.
Philipp L. Rosendahl and Philipp Weißgraeber
The Cryosphere, 14, 131–145, https://doi.org/10.5194/tc-14-131-2020, https://doi.org/10.5194/tc-14-131-2020, 2020
Short summary
Short summary
Dry-snow slab avalanche release is preceded by a fracture process within the snowpack. Recognizing weak layer collapse as an integral part of the fracture process is crucial and explains phenomena such as whumpf sounds and remote triggering of avalanches from low-angle terrain. In this second part of the two-part work we propose a novel mixed-mode coupled stress and energy failure criterion for nucleation of weak layer failure due to external loading of the snowpack.
Silvan Leinss, Henning Löwe, Martin Proksch, and Anna Kontu
The Cryosphere, 14, 51–75, https://doi.org/10.5194/tc-14-51-2020, https://doi.org/10.5194/tc-14-51-2020, 2020
Short summary
Short summary
The anisotropy of the snow microstructure, given by horizontally aligned ice crystals and vertically interlinked crystal chains, is a key quantity to understand mechanical, dielectric, and thermodynamical properties of snow. We present a model which describes the temporal evolution of the anisotropy. The model is driven by snow temperature, temperature gradient, and the strain rate. The model is calibrated by polarimetric radar data (CPD) and validated by computer tomographic 3-D snow images.
Pascal Hagenmuller, Frederic Flin, Marie Dumont, François Tuzet, Isabel Peinke, Philippe Lapalus, Anne Dufour, Jacques Roulle, Laurent Pézard, Didier Voisin, Edward Ando, Sabine Rolland du Roscoat, and Pascal Charrier
The Cryosphere, 13, 2345–2359, https://doi.org/10.5194/tc-13-2345-2019, https://doi.org/10.5194/tc-13-2345-2019, 2019
Short summary
Short summary
Light–absorbing particles (LAPs, e.g. dust or black carbon) in snow are a potent climate forcing agent. Their presence darkens the snow surface and leads to higher solar energy absorption. Several studies have quantified this radiative impact by assuming that LAPs were motionless in dry snow, without any clear evidence of this assumption. Using time–lapse X–ray tomography, we show that temperature gradient metamorphism of snow induces downward motion of LAPs, leading to self–cleaning of snow.
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019, https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Short summary
Here we present a novel method to estimate the impurity content (e.g. black carbon or mineral dust) in Alpine snow based on measurements of light extinction profiles. This method is proposed as an alternative to chemical measurements, allowing rapid retrievals of vertical concentrations of impurities in the snowpack. In addition, the results provide a better understanding of the impact of impurities on visible light extinction in snow.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.
Benjamin Birner, Christo Buizert, Till J. W. Wagner, and Jeffrey P. Severinghaus
The Cryosphere, 12, 2021–2037, https://doi.org/10.5194/tc-12-2021-2018, https://doi.org/10.5194/tc-12-2021-2018, 2018
Short summary
Short summary
Ancient air enclosed in bubbles of the Antarctic ice sheet is a key source of information about the Earth's past climate. However, a range of physical processes in the snow layer atop an ice sheet may change the trapped air's chemical composition before it is occluded in the ice. We developed the first detailed 2-D computer simulation of these processes and found a new method to improve the reconstruction of past climate from air in ice cores bubbles.
Cited articles
Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B., Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev., 4, 325–355, https://doi.org/10.5194/gmd-4-325-2011, 2011.
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement of visible light absorption due to mixing state, J. Geophys. Res.-Atmos., 111, D20211, https://doi.org/10.1029/2006JD007315, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, 2013.
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S. M., Mellon, D., Nuaaman, I., Olfert, J. S., Petaja, T., Quinn, P. K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.: Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon, Science, 337, 1078–1081, 2012.
Cohen, J. and Rind, D.: The effect of snow cover on the climate, J. Climate, 4, 689–706, 1991.
Corbin, J. C., Pieber, S. M., Czech, H., Zanatta, M., Jakobi, G., Massabò, D., Orasche, J., El Haddad, I., Mensah, A. A., and Stengel, B.: Brown and black carbon emitted by a marine engine operated on heavy fuel oil and distillate fuels: optical properties, size distributions, and emission factors, J. Geophys. Res.-Atmos., 123, 6175–6195, 2018.
Dang, C., Brandt, R. E., and Warren, S. G.: Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon, J. Geophys. Res.-Atmos., 120, 5446–5468, 2015.
Dang, C., Fu, Q., and Warren, S. G.: Effect of Snow Grain Shape on Snow Albedo, J. Atmos. Sci., 73, 3573–3583, 2016.
Dang, C., Warren, S. G., Fu, Q., Doherty, S. J., and Sturm, M.: Measurements of light-absorbing particles in snow across the Arctic, North America, and China: effects on surface albedo, J. Geophys. Res.-Atmos., 122, 10149–10168, 2017.
Ding, Q., Schweiger, A., L'Heureux, M., Steig, E. J., Battisti, D. S., Johnson, N. C., Blanchard-Wrigglesworth, E., Po-Chedley, S., Zhang, Q., and Harnos, K.: Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations, Nat. Geosci., 12, 28–33, 2019.
Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R., and Warren, S. G.: Black carbon and other light-absorbing particles in snow of central North America, J. Geophys. Res.-Atmos., 119, 12807–12831, 2014.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Dong, Z., Kang, S., Qin, D., Shao, Y., Ulbrich, S., and Qin, X.: Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau, The Cryosphere, 12, 3877–3890, https://doi.org/10.5194/tc-12-3877-2018, 2018.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced solar energy absorption by internally-mixed black carbon in snow grains, Atmos. Chem. Phys., 12, 4699–4721, https://doi.org/10.5194/acp-12-4699-2012, 2012.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Hadley, O. L. and Kirchstetter, T. W.: Black-carbon reduction of snow albedo, Nat. Clim. Change, 2, 437–440, 2012.
He, C. L., Takano, Y., Liou, K. N., Yang, P., Li, Q., Chen, F., He, C., Takano, Y., Liou, K. N., and Yang, P.: Impact of Snow Grain Shape and Black Carbon-Snow Internal Mixing on Snow Optical Properties: Parameterizations for Climate Models, J. Climate, 30, 10019–10036, 2017.
He, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., Ming, J., and Qian, Y.: Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model, Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, 2018a.
He, C. L., Liou, K. N., and Takano, Y.: Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo, Geophys. Res. Lett., 45, 2697–2705, 2018b.
He, C. L., Liou, K. N., Takano, Y., Yang, P., Qi, L., and Chen, F.: Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis, J. Geophys. Res.-Atmos., 123, 1253–1268, 2018c.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697, 2001.
Kahnert, M., Nousiainen, T., Lindqvist, H., and Ebert, M.: Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations, Opt. Express, 20, 10042–10058, 2012.
Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow, Appl. Optics, 43, 1589–1602, 2004.
Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon, Atmos. Chem. Phys., 10, 4207–4220, https://doi.org/10.5194/acp-10-4207-2010, 2010.
Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M., and Schwarz, J. P.: Brown carbon and internal mixing in biomass burning particles, PNAS, 109, 14802–14807, 2012.
Li, X., Kang, S., He, X., Qu, B., Tripathee, L., Jing, Z., Paudyal, R., Li, Y., Zhang, Y., and Yan, F.: Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau, Sci. Total Environ., 587, 482–490, 2017.
Li, X., Kang, S., Zhang, G., Qu, B., Tripathee, L., Paudyal, R., Jing, Z., Zhang, Y., Yan, F., and Li, G.: Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing, Atmos. Res., 200, 77–87, 2018.
Liou, K. N., Takano, Y., and Yang, P.: Light absorption and scattering by aggregates: Application to black carbon and snow grains, J. Quant. Spectrosc. Ra., 112, 1581–1594, 2011.
Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee, W. L.: Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models, J. Geophys. Res.-Atmos., 119, 7616–7632, 2014.
Liu, D. T., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V., Reddington, C. L., Kong, S. F., Williams, P. I., Ting, Y. C., Haslett, S., Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and Allan, J. D.: Black-carbon absorption enhancement in the atmosphere determined by particle mixing state, Nat. Geosci., 10, 184–188, https://doi.org/10.1038/ngeo2901, 2017.
Liu, J., Wu, D., Liu, G., Mao, R., Chen, S., Ji, M., Fu, P., Sun, Y., Pan, X., and Jin, H.: Impact of Arctic amplification on declining spring dust events in East Asia, Clim. Dynam., 54, 1913–1935, 2020.
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced solar energy absorption by internally-mixed black carbon in snow grains, Atmos. Chem. Phys., 12, 4699–4721, https://doi.org/10.5194/acp-12-4699-2012, 2012.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity, Nat. Commun., 9, 1–11, 2018.
Meier, W. N., Hovelsrud, G. K., Van Oort, B. E., Key, J. R., Kovacs, K. M., Michel, C., Haas, C., Granskog, M. A., Gerland, S., and Perovich, D. K.: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity, Rev. Geophys., 52, 185–217, 2014.
Moffet, R. C. and Prather, K. A.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates, PNAS, 106, 11872–11877, 2009.
Moteki, N., Kondo, Y., Miyazaki, Y., Takegawa, N., Komazaki, Y., Kurata, G., Shirai, T., Blake, D. R., Miyakawa, T., and Koike, M.: Evolution of mixing state of black carbon particles: Aircraftmeasurements over the western Pacific in March 2004, Geophys. Res. Lett., 34, L11803, https://doi.org/10.1029/2006GL028943, 2007.
Peng, J. F., Hu, M., Guo, S., Du, Z. F., Zheng, J., Shang, D. J., Zamora, M. L., Zeng, L. M., Shao, M., Wu, Y. S., Zheng, J., Wang, Y., Glen, C. R., Collins, D. R., Molina, M. J., and Zhang, R. Y.: Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments, P. Natl. Acad. Sci. USA, 113, 4266–4271, 2016.
Pu, W., Wang, X., Wei, H., Zhou, Y., Shi, J., Hu, Z., Jin, H., and Chen, Q.: Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China, The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, 2017.
Pu, W., Cui, J., Shi, T., Zhang, X., He, C., and Wang, X.: The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China, Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, 2019.
Qian, Y., Gustafson, W. I., Leung, L. R., and Ghan, S. J.: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations, J. Geophys. Res.-Atmos., 114, D03108, https://doi.org/10.1029/2008JD011039, 2009.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, 2008.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114, 1998.
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and Fahey, D. W.: Black carbon aerosol size in snow, Sci. Rep., 3, 1356, https://doi.org/10.1038/srep01356, 2013.
Shi, T., Pu, W., Zhou, Y., Cui, J., Zhang, D., and Wang, X.: Albedo of Black Carbon-Contaminated Snow Across Northwestern China and the Validation With Model Simulation, J. Geophys. Res.-Atmos., 125, e2019JD032065, https://doi.org/10.1029/2019JD032065, 2020.
Sun, H. L., Biedermann, L., and Bond, T. C.: Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol, Geophys. Res. Lett., 34, L17813, https://doi.org/10.1029/2007GL029797, 2007.
Toon, O. B., Mckay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple-Scattering Atmospheres, J. Geophys. Res.-Atmos., 94, 16287–16301, 1989.
Turpin, B. J. and Lim, H. J.: Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. Tech., 35, 602–610, 2001.
Wang, X., Doherty, S. J., and Huang, J.: Black carbon and other light-absorbing impurities in snow across Northern China, J. Geophys. Res.-Atmos., 118, 1471–1492, 2013.
Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X., Shi, J., Jin, H., Dai, M., and Chen, Q.: Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey, Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, 2017.
Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow. 2: Snow Containing Atmospheric Aerosols, J. Atmos. Sci., 37, 2734–2745, 1980.
Xu, B. Q., Cao, J. J., Hansen, J., Yao, T. D., Joswia, D. R., Wang, N. L., Wu, G. J., Wang, M., Zhao, H. B., Yang, W., Liu, X. Q., and He, J. Q.: Black soot and the survival of Tibetan glaciers, PNAS, 106, 22114–22118, 2009.
Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE, Atmos. Chem. Phys., 9, 2035–2050, https://doi.org/10.5194/acp-9-2035-2009, 2009.
Yao, T. D., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X. X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, 2012.
Ye, H., Zhang, R., Shi, J., Huang, J., Warren, S. G., and Fu, Q.: Black carbon in seasonal snow across northern Xinjiang in northwestern China, Environ. Res. Lett., 7, 044002, https://doi.org/10.1088/1748-9326/7/4/044002, 2012.
You, R., Radney, J. G., Zachariah, M. R., and Zangmeister, C. D.: Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials, Environ. Sci. Technol., 50, 7982–7990, 2016.
Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M., Li, C., Yang, W., Gao, T., Sillanpää, M., and Li, X.: Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau, J. Geophys. Res.-Atmos., 122, 6915–6933, 2017.
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li, X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.: Black carbon and mineral dust in snow cover on the Tibetan Plateau, The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018.
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over north China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glaciers.
We have explicitly resolved optical properties of coated BC in snow for explaining complex...