Articles | Volume 15, issue 1
The Cryosphere, 15, 133–148, 2021
https://doi.org/10.5194/tc-15-133-2021
The Cryosphere, 15, 133–148, 2021
https://doi.org/10.5194/tc-15-133-2021

Research article 13 Jan 2021

Research article | 13 Jan 2021

Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt

Alia L. Khan et al.

Related authors

Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-130,https://doi.org/10.5194/tc-2021-130, 2021
Preprint under review for TC
Short summary
Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-76,https://doi.org/10.5194/tc-2021-76, 2021
Revised manuscript under review for TC
Short summary
Brief communication: Mapping Greenland's perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020,https://doi.org/10.5194/tc-14-2809-2020, 2020
Survey on early career travel support shows geographic, career stage, and indigenous status inequality in access to polar science events
Alice Bradley, Juan Höfer, Valentina Savaglia, and Clare Eayrs
Adv. Geosci., 53, 73–85, https://doi.org/10.5194/adgeo-53-73-2020,https://doi.org/10.5194/adgeo-53-73-2020, 2020
Short summary
Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics
Shungudzemwoyo P. Garaba and Heidi M. Dierssen
Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020,https://doi.org/10.5194/essd-12-77-2020, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Antarctic
Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144, https://doi.org/10.5194/tc-14-4135-2020,https://doi.org/10.5194/tc-14-4135-2020, 2020
Short summary
Representative surface snow density on the East Antarctic Plateau
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020,https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020,https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica
Charles Amory
The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020,https://doi.org/10.5194/tc-14-1713-2020, 2020
Short summary
Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020,https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary

Cited articles

Amesbury, M. J., Roland, T. P., Royles, J., Hodgson, D. A., Convey, P., Griffiths, H. and Charman, D. J.: Widespread Biological Response to Rapid Warming on the Antarctic Peninsula, Curr. Biol., 21, 1–7, https://doi.org/10.1016/j.cub.2017.04.034, 2017. 
Benning, L. G., Anesio, A. M., Lutz, S., and Tranter, M.: Biological impact on Greenland's albedo, Nat. Geosci., 7, 691–691, https://doi.org/10.1038/ngeo2260, 2014. 
Bidigare, R. R., Ondrusek, M. E., Kennicutt II, M. C., Iturriaga, R., Harvey, H. R., Hoham, R. W., and Macko, S. A.: Evidence a photoprotective for secondary carotenoids of snow algae, J. Phycol., 29, 427–434, https://doi.org/10.1111/j.1529-8817.1993.tb00143.x, 1993. 
Booth, C. R., Lucas, T. B., Morrow, J. H., Weiler, C. S., and Penhale, P. A.: The United States National Science Foundation's polar network for monitoring ultraviolet radiation, Antarc. Res. Ser., edited by: Weiler, C. S. and Penhale, P. A., 62, 17–37, 1994. 
Bryant, A. C., Painter, T. H., Deems, J. S., and Bender, S. M.: Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin, Geophys. Res. Lett., 40, 3945–3949, https://doi.org/10.1002/grl.50773, 2013. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.