Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-565-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-565-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep learning applied to glacier evolution modelling
Jordi Bolibar
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l’Environnement (IGE, UMR 5001), Grenoble, France
INRAE, UR RiverLy, Villeurbanne, Lyon, France
Antoine Rabatel
Univ. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l’Environnement (IGE, UMR 5001), Grenoble, France
Isabelle Gouttevin
Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France
Clovis Galiez
Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
Thomas Condom
Univ. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l’Environnement (IGE, UMR 5001), Grenoble, France
Eric Sauquet
INRAE, UR RiverLy, Villeurbanne, Lyon, France
Related authors
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Tristan Jaouen, Lionel Benoit, Louis Héraut, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2737, https://doi.org/10.5194/egusphere-2024-2737, 2024
Short summary
Short summary
This study uses a multi-model approach to assess future changes in river flow intermittency across France under climate change. Combining projections from the Explore2 project with historical flow observations, logistic regressions estimate daily probabilities of flow intermittency (PFI) under RCP 2.6, 4.5, and 8.5 scenarios. Results suggest intensifying and prolonged dry spells throughout the 21st century, with southern France more affected, while uncertainty remains higher in northern regions.
Etienne Ducasse, Romain Millan, Jonas Kvist Andersen, and Antoine Rabatel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2662, https://doi.org/10.5194/egusphere-2024-2662, 2024
Short summary
Short summary
Our study examines glacier movement in the tropical Andes from 2013 to 2022 using satellite data. Despite challenges like small glacier size and frequent cloud cover, we tracked annual speeds and seasonal changes. We found stable annual speeds but significant shifts between wet and dry seasons, likely due to changes in meltwater production and glacier-bedrock conditions. This research enhances understanding of how tropical glaciers react to climate change.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
EGUsphere, https://doi.org/10.5194/egusphere-2024-2370, https://doi.org/10.5194/egusphere-2024-2370, 2024
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly-gauged regions.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733, https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60-70% and that accounting for this effect results in less ice loss by the end of the century.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024, https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Short summary
Forecasting wind fields over mountains is of high importance for several applications and particularly for understanding how wind erodes and disperses snow. Forecasters rely on operational wind forecasts over mountains, which are currently only available on kilometric scales. These forecasts can also be affected by errors of diverse origins. Here we introduce a new strategy based on artificial intelligence to correct large-scale wind forecasts in mountains and increase their spatial resolution.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frédéric Berger, Jean-Matthieu Monnet, Laurent Borgniet, Éric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data, 15, 5121–5133, https://doi.org/10.5194/essd-15-5121-2023, https://doi.org/10.5194/essd-15-5121-2023, 2023
Short summary
Short summary
Forests strongly modify the accumulation, metamorphism and melting of snow in midlatitude and high-latitude regions. Two field campaigns during the winters 2016–17 and 2017–18 were conducted in a coniferous forest in the French Alps to study interactions between snow and vegetation. This paper presents the field site, instrumentation and collection methods. The observations include forest characteristics, meteorology, snow cover and snow interception by the canopy during precipitation events.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Arthur Bayle, Bradley Z. Carlson, Anaïs Zimmer, Sophie Vallée, Antoine Rabatel, Edoardo Cremonese, Gianluca Filippa, Cédric Dentant, Christophe Randin, Andrea Mainetti, Erwan Roussel, Simon Gascoin, Dov Corenblit, and Philippe Choler
Biogeosciences, 20, 1649–1669, https://doi.org/10.5194/bg-20-1649-2023, https://doi.org/10.5194/bg-20-1649-2023, 2023
Short summary
Short summary
Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. We used remote sensing approaches to study early succession dynamics as it allows to analyze the deglaciation, colonization, and vegetation growth within a single framework. We found that the heterogeneity of early succession dynamics is deterministic and can be explained well by local environmental context. This work has been done by an international consortium.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Romina Llanos, Patricia Moreira-Turcq, Bruno Turcq, Raúl Espinoza Villar, Yizet Huaman, Thomas Condom, and Bram Willems
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-47, https://doi.org/10.5194/bg-2022-47, 2022
Manuscript not accepted for further review
Short summary
Short summary
Our results highlight a marked decrease of high carbon accumulation rates in Andean peatlands over the last decades due to the diminution in melt water inflow generated by the retreat of glaciers as a consequence of regional warming. These marked changes stress the high ecological sensitivity of these peatlands, endangering their outstanding role in the regional (and even global) C cycle as large C sinks that contribute to the mitigation of global climate change.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Frank Paul, Philipp Rastner, Roberto Sergio Azzoni, Guglielmina Diolaiuti, Davide Fugazza, Raymond Le Bris, Johanna Nemec, Antoine Rabatel, Mélanie Ramusovic, Gabriele Schwaizer, and Claudio Smiraglia
Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, https://doi.org/10.5194/essd-12-1805-2020, 2020
Short summary
Short summary
We have used Sentinel-2 satellite data from 2015 and 2016 to create a new glacier inventory for the European Alps. Outlines from earlier national inventories were used to guide manual corrections (e.g. ice in shadow or under debris cover) of the automatically mapped clean ice. We mapped 4395 glaciers, covering 1806 km2, an area loss of about 14 % (or −1.2 % per year) compared to the last inventory of 2003. We conclude that glacier shrinkage in the Alps has continued unabated since the mid-1980s.
Christian G. Andresen, David M. Lawrence, Cathy J. Wilson, A. David McGuire, Charles Koven, Kevin Schaefer, Elchin Jafarov, Shushi Peng, Xiaodong Chen, Isabelle Gouttevin, Eleanor Burke, Sarah Chadburn, Duoying Ji, Guangsheng Chen, Daniel Hayes, and Wenxin Zhang
The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, https://doi.org/10.5194/tc-14-445-2020, 2020
Short summary
Short summary
Widely-used land models project near-surface drying of the terrestrial Arctic despite increases in the net water balance driven by climate change. Drying was generally associated with increases of active-layer depth and permafrost thaw in a warming climate. However, models lack important mechanisms such as thermokarst and soil subsidence that will change the hydrological regime and add to the large uncertainty in the future Arctic hydrological state and the associated permafrost carbon feedback.
Yves Tramblay, Louise Mimeau, Luc Neppel, Freddy Vinet, and Eric Sauquet
Hydrol. Earth Syst. Sci., 23, 4419–4431, https://doi.org/10.5194/hess-23-4419-2019, https://doi.org/10.5194/hess-23-4419-2019, 2019
Short summary
Short summary
In the present study the flood trends have been assessed for a large sample of 171 basins located in southern France, which has a Mediterranean climate. Results show that, despite the increase in rainfall intensity previously observed in this area, there is no general increase in flood magnitude. Instead, a reduction in the annual number of floods is found, linked to a decrease in soil moisture caused by the increase in temperature observed in recent decades.
Eric Sauquet, Bastien Richard, Alexandre Devers, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, https://doi.org/10.5194/hess-23-3683-2019, 2019
Short summary
Short summary
This study aims to identify catchments and the associated water uses vulnerable to climate change. Vulnerability is considered here to be the likelihood of water restrictions which are unacceptable for agricultural uses. This study provides the first regional analysis of the stated water restrictions, highlighting heterogeneous decision-making processes; data from a national system of compensation to farmers for uninsurable damages were used to characterize past failure events.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Benjamin Graff, and Jean-Michel Soubeyroux
Earth Syst. Sci. Data, 11, 241–260, https://doi.org/10.5194/essd-11-241-2019, https://doi.org/10.5194/essd-11-241-2019, 2019
Short summary
Short summary
SCOPE Climate is a 25-member ensemble of 142-year daily high-resolution reconstructions of precipitation, temperature, and Penman–Monteith reference evapotranspiration over France. It is the first century-long gridded high-resolution homogeneous dataset available over France. It thus paves the way for studying local historical meteorological events and for assessing the local climate variability from the end of the 19th century.
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Short summary
Snow insulates the ground from the cold air in the Arctic winter, majorly affecting permafrost. This insulation depends on snow characteristics and is poorly quantified. Here, we characterize it at a carbon-rich permafrost site, using a recent technique that retrieves the 3-D structure of snow and its thermal properties. We adapt a snowpack model enabling the simulation of this insulation over a whole winter. We estimate that local snow variations induce up to a 6 °C spread in soil temperatures.
Thomas Condom, Marie Dumont, Lise Mourre, Jean Emmanuel Sicart, Antoine Rabatel, Alessandra Viani, and Alvaro Soruco
Geosci. Instrum. Method. Data Syst., 7, 169–178, https://doi.org/10.5194/gi-7-169-2018, https://doi.org/10.5194/gi-7-169-2018, 2018
Short summary
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
Aurélien Beaufort, Nicolas Lamouroux, Hervé Pella, Thibault Datry, and Eric Sauquet
Hydrol. Earth Syst. Sci., 22, 3033–3051, https://doi.org/10.5194/hess-22-3033-2018, https://doi.org/10.5194/hess-22-3033-2018, 2018
Short summary
Short summary
Streams which may stop flowing are poorly gauged. To improve their characterisation, we use an extended network providing monthly visual observations stating whether streams are flowing or not across France. These observations are combined with discharge and groundwater level in models to predict daily regional probability of drying. This approach allows identification of the most impacted regions by flow intermittence and estimation of the probability of drying dynamics over the last 27 years.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Julia Boike, Inge Juszak, Stephan Lange, Sarah Chadburn, Eleanor Burke, Pier Paul Overduin, Kurt Roth, Olaf Ippisch, Niko Bornemann, Lielle Stern, Isabelle Gouttevin, Ernst Hauber, and Sebastian Westermann
Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, https://doi.org/10.5194/essd-10-355-2018, 2018
Short summary
Short summary
A 20-year data record from the Bayelva site at Ny-Ålesund, Svalbard, is presented on meteorology, energy balance components, surface and subsurface observations. This paper presents the data set, instrumentation, calibration, processing and data quality control. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation and loss of permafrost at this site.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Lucas Davaze, Antoine Rabatel, Yves Arnaud, Pascal Sirguey, Delphine Six, Anne Letreguilly, and Marie Dumont
The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, https://doi.org/10.5194/tc-12-271-2018, 2018
Short summary
Short summary
About 150 of the 250 000 inventoried glaciers are currently monitored with surface mass balance (SMB) measurements. To increase this number, we propose a method to retrieve annual and summer SMB from optical satellite imagery, with an application over 30 glaciers in the French Alps. Computing the glacier-wide averaged albedo allows us to reconstruct annual and summer SMB of most of the studied glaciers, highlighting the potential of this method to retrieve SMB of unmonitored glaciers.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Alexandre Devers, and Benjamin Graff
Hydrol. Earth Syst. Sci., 21, 2923–2951, https://doi.org/10.5194/hess-21-2923-2017, https://doi.org/10.5194/hess-21-2923-2017, 2017
Short summary
Short summary
The historical depth of streamflow observations in France is extended through daily hydrometeorogical reconstructions from 1871 onwards over a large set of near-natural catchments. Innovative approaches are proposed to identify and intercompare extreme low-flow events from these reconstructions, both in time and across France in a homogeneous way over more than 140 years. Analyses bring forward recent well-known events like 1976 and 1989–1990 but also much older ones like 1878 and 1893.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
L. Maisincho, V. Favier, P. Wagnon, V. Jomelli, R. Basantes Serrano, B. Francou, M. Villacis, A. Rabatel, M. Ménégoz, L. Mourre, and B. Cáceres
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-105, https://doi.org/10.5194/tc-2016-105, 2016
Revised manuscript not accepted
Short summary
Short summary
Studies performed in the outer tropics suggested that Positive Degree-Day (PDD) model should be used with caution in tropical areas because temperature is not directly linked to the main local melting processes. Using an enhanced PDD model in the inner tropics during nine years allowed an accurate modelling of the glacier-wide mass balances and ablation on the Antizana glacier. This proves the high sensitivity of glaciers to temperature changes in Ecuador.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, and Benjamin Graff
Clim. Past, 12, 635–662, https://doi.org/10.5194/cp-12-635-2016, https://doi.org/10.5194/cp-12-635-2016, 2016
Short summary
Short summary
This paper describes a daily high-resolution reconstruction of precipitation and temperature fields in France from 1871 onwards. A statistical method linking atmospheric circulation to local precipitation is refined for taking advantage of recently published global long-term atmospheric and oceanic reconstructions. The resulting data set allows filling in the spatial and temporal data gaps in historical surface observations, and improving our knowledge on the local-scale climate variability.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
L. Mourre, T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin
Hydrol. Earth Syst. Sci., 20, 125–141, https://doi.org/10.5194/hess-20-125-2016, https://doi.org/10.5194/hess-20-125-2016, 2016
Short summary
Short summary
Three different types of gridded precipitation products are compared in a high glaciated tropical mountain environment (Cordillera Blanca, Peru): ground-based interpolation, a satellite-derived product (TRMM3B42), and outputs from the WRF regional climate model. While none of the products meets the challenge of representing both accumulated quantities and frequency of occurrence at the short timescale, we concluded that new methods should be used to merge those various precipitation products.
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015, https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
Short summary
Pyrenean glaciers are currently the southernmost glaciers in Europe. Using an exceptional archive of historical data sets and recent accurate observations, we propose the reconstruction of the length, area, elevation, and mass balance of Ossoue Glacier (French Pyrenees) since the Little Ice Age. We show that its evolution is in good agreement with climatic data. Assuming that the current ablation rate stays constant, Ossoue Glacier will disappear midway through the 21st century.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
K. Kochanek, B. Renard, P. Arnaud, Y. Aubert, M. Lang, T. Cipriani, and E. Sauquet
Nat. Hazards Earth Syst. Sci., 14, 295–308, https://doi.org/10.5194/nhess-14-295-2014, https://doi.org/10.5194/nhess-14-295-2014, 2014
S. Cauvy-Fraunié, T. Condom, A. Rabatel, M. Villacis, D. Jacobsen, and O. Dangles
Hydrol. Earth Syst. Sci., 17, 4803–4816, https://doi.org/10.5194/hess-17-4803-2013, https://doi.org/10.5194/hess-17-4803-2013, 2013
S. B. Morera, T. Condom, P. Vauchel, J.-L. Guyot, C. Galvez, and A. Crave
Hydrol. Earth Syst. Sci., 17, 4641–4657, https://doi.org/10.5194/hess-17-4641-2013, https://doi.org/10.5194/hess-17-4641-2013, 2013
S. Radanovics, J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron
Hydrol. Earth Syst. Sci., 17, 4189–4208, https://doi.org/10.5194/hess-17-4189-2013, https://doi.org/10.5194/hess-17-4189-2013, 2013
T. H. Snelder, T. Datry, N. Lamouroux, S. T. Larned, E. Sauquet, H. Pella, and C. Catalogne
Hydrol. Earth Syst. Sci., 17, 2685–2699, https://doi.org/10.5194/hess-17-2685-2013, https://doi.org/10.5194/hess-17-2685-2013, 2013
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Numerical Modelling
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
Quantifying the Buttressing Contribution of Sea Ice to Crane Glacier
A new glacier thickness and bed map for Svalbard
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf
Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion
Exploring the ability of the variable-resolution Community Earth System Model to simulate cryospheric–hydrological variables in High Mountain Asia
Modelling the development and decay of cryoconite holes in northwestern Greenland
Thermal regime of the Grigoriev ice cap and the Sary-Tor glacier in the inner Tien Shan, Kyrgyzstan
Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Modelling steady states and the transient response of debris-covered glaciers
Twentieth century global glacier mass change: an ensemble-based model reconstruction
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
Brief communication: Time step dependence (and fixes) in Stokes simulations of calving ice shelves
Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model
The contrasting response of outlet glaciers to interior and ocean forcing
Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach
Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya
Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska
Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model
Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations
Global glacier volume projections under high-end climate change scenarios
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024, https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Short summary
The form of the friction law which determines the speed of ice sliding over the bedrock remains a major source of uncertainty in ice sheet model projections of future sea level rise. Jakobshavn Isbræ, the fastest-flowing glacier in Greenland, which has undergone significant changes in the last few decades, is an ideal case for testing sliding laws. We find that a regularised Coulomb friction law reproduces the large seasonal and inter-annual flow speed variations most accurately.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1499, https://doi.org/10.5194/egusphere-2024-1499, 2024
Short summary
Short summary
In 2022, sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the sea ice was attached to the terminus of the glacier, it could provide a resistive stress against the glacier’s ice-flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the sea ice provided significant support to Crane prior to its disintegration.
Ward van Pelt and Thomas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2024-1525, https://doi.org/10.5194/egusphere-2024-1525, 2024
Short summary
Short summary
Accurate information on the ice thickness of Svalbard’s glaciers is important for assessing the contribution to sea level rise in a present and future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations, to infer basal conditions. We present and analyze the new bed and thickness maps, quantify the ice volume (6,800 km3), and compare against radar data and previous studies.
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024, https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Short summary
A large fraction of the mass loss from marine-terminating glaciers is attributed to frontal ablation. In this study, we used a 3D ice flow model of a real glacier that includes the effects of calving and submarine melting. Over a 30-month simulation, we found that the model reproduced the seasonal cycle for this glacier. Besides, the front positions were in good agreement with observations in the central part of the front, with longitudinal differences, on average, below 15 m.
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023, https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023, https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary
Short summary
We evaluate the ability of the Community Earth System Model (CESM2) to simulate cryospheric–hydrological variables, such as glacier surface mass balance (SMB), over High Mountain Asia (HMA) by using a global grid (~111 km) with regional refinement (~7 km) over HMA. Evaluations of two different simulations show that climatological biases are reduced, and glacier SMB is improved (but still too negative) by modifying the snow and glacier model and using an updated glacier cover dataset.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 16, 4513–4535, https://doi.org/10.5194/tc-16-4513-2022, https://doi.org/10.5194/tc-16-4513-2022, 2022
Short summary
Short summary
We examine the thermal regime of the Grigoriev ice cap and the Sary-Tor glacier, both located in the inner Tien Shan in Kyrgyzstan. Our findings are important as the ice dynamics can only be understood and modelled precisely if ice temperature is considered correctly in ice flow models. The calibrated parameters of this study can be used in applications with ice flow models for individual ice masses as well as to optimise more general models for large-scale regional simulations.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021, https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary
Short summary
We simulate the current state and future evolution of the Mocho-Choshuenco ice cap in southern Chile (40°S, 72°W) with the ice-sheet model SICOPOLIS. Under different global warming scenarios, we project ice mass losses between 56 % and 97 % by the end of the 21st century. We quantify the uncertainties based on an ensemble of climate models and on the temperature dependence of the equilibrium line altitude. Our results suggest a considerable deglaciation in southern Chile in the next 80 years.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Jan-Hendrik Malles and Ben Marzeion
The Cryosphere, 15, 3135–3157, https://doi.org/10.5194/tc-15-3135-2021, https://doi.org/10.5194/tc-15-3135-2021, 2021
Short summary
Short summary
To better estimate the uncertainty in glacier mass change modeling during the 20th century we ran an established model with an ensemble of meteorological data sets. We find that the total ensemble uncertainty, especially in the early 20th century, when glaciological and meteorological observations at glacier locations were sparse, increases considerably compared to individual ensemble runs. This stems from regions with a lot of ice mass but few observations (e.g., Greenland periphery).
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020, https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.
Brandon Berg and Jeremy Bassis
The Cryosphere, 14, 3209–3213, https://doi.org/10.5194/tc-14-3209-2020, https://doi.org/10.5194/tc-14-3209-2020, 2020
Short summary
Short summary
Computer models of ice sheets and glaciers are an important component of projecting sea level rise due to climate change. For models that seek to simulate the full balance of forces within the ice, if portions of the glacier are allowed to quickly break off in a process called iceberg calving, a numerical issue arises that can cause inaccurate results. We examine the issue and propose a solution so that future models can more accurately predict the future behavior of ice sheets and glaciers.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
John Erich Christian, Alexander A. Robel, Cristian Proistosescu, Gerard Roe, Michelle Koutnik, and Knut Christianson
The Cryosphere, 14, 2515–2535, https://doi.org/10.5194/tc-14-2515-2020, https://doi.org/10.5194/tc-14-2515-2020, 2020
Short summary
Short summary
We use simple, physics-based models to compare how marine-terminating glaciers respond to changes at their marine margin vs. inland surface melt. Initial glacier retreat is more rapid for ocean changes than for inland changes, but in both cases, glaciers will continue responding for millennia. We analyze several implications of these differing pathways of change. In particular, natural ocean variability must be better understood to correctly identify the anthropogenic role in glacier retreat.
Julia Eis, Fabien Maussion, and Ben Marzeion
The Cryosphere, 13, 3317–3335, https://doi.org/10.5194/tc-13-3317-2019, https://doi.org/10.5194/tc-13-3317-2019, 2019
Short summary
Short summary
To provide estimates of past glacier mass changes, an adequate initial state is required. However, information about past glacier states at regional or global scales is largely incomplete. Our study presents a new way to initialize the Open Global Glacier Model from past climate information and present-day geometries. We show that even with perfectly known but incomplete boundary conditions, the problem of model initialization leads to nonunique solutions, and we propose an ensemble approach.
Shun Tsutaki, Koji Fujita, Takayuki Nuimura, Akiko Sakai, Shin Sugiyama, Jiro Komori, and Phuntsho Tshering
The Cryosphere, 13, 2733–2750, https://doi.org/10.5194/tc-13-2733-2019, https://doi.org/10.5194/tc-13-2733-2019, 2019
Short summary
Short summary
We investigate thickness change of Bhutanese glaciers during 2004–2011 using repeat GPS surveys and satellite-based observations. The thinning rate of Lugge Glacier (LG) is > 3 times that of Thorthormi Glacier (TG). Numerical simulations of ice dynamics and surface mass balance (SMB) demonstrate that the rapid thinning of LG is driven by both negative SMB and dynamic thinning, while the thinning of TG is minimised by a longitudinally compressive flow regime.
Beatriz Recinos, Fabien Maussion, Timo Rothenpieler, and Ben Marzeion
The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019, https://doi.org/10.5194/tc-13-2657-2019, 2019
Short summary
Short summary
We have implemented a frontal ablation parameterization into the Open Global Glacier Model and have shown that inversion methods based on mass conservation systematically underestimate the mass turnover (and therefore the thickness) of tidewater glaciers when neglecting frontal ablation. This underestimation can rise up to 19 % on a regional scale. Not accounting for frontal ablation will have an impact on the estimate of the glaciers’ potential contribution to sea level rise.
Johanna Beckmann, Mahé Perrette, Sebastian Beyer, Reinhard Calov, Matteo Willeit, and Andrey Ganopolski
The Cryosphere, 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019, https://doi.org/10.5194/tc-13-2281-2019, 2019
Short summary
Short summary
Submarine melting (SM) has been discussed as potentially triggering the recently observed retreat at outlet glaciers in Greenland. How much it may contribute in terms of future sea level rise (SLR) has not been quantified yet. When accounting for SM in our experiments, SLR contribution of 12 outlet glaciers increases by over 3-fold until the year 2100 under RCP8.5. Scaling up from 12 to all of Greenland's outlet glaciers increases future SLR contribution of Greenland by 50 %.
Matt Trevers, Antony J. Payne, Stephen L. Cornford, and Twila Moon
The Cryosphere, 13, 1877–1887, https://doi.org/10.5194/tc-13-1877-2019, https://doi.org/10.5194/tc-13-1877-2019, 2019
Short summary
Short summary
Iceberg calving is a major factor in the retreat of outlet glaciers of the Greenland Ice Sheet. Massive block overturning calving events occur at major outlet glaciers. A major calving event in 2009 was triggered by the release of a smaller block of ice from above the waterline. Using a numerical model, we investigate the feasibility of this mechanism to drive large calving events. We find that relatively small perturbations induce forces large enough to open cracks in ice at the glacier bed.
Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison
The Cryosphere, 13, 325–350, https://doi.org/10.5194/tc-13-325-2019, https://doi.org/10.5194/tc-13-325-2019, 2019
Short summary
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.
Cited articles
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. a
Benn, D. I. and Evans, D. J. A.: Glaciers & glaciation, Routledge, New York,
NY, USA, 2nd edn.,
available at: http://www.imperial.eblib.com/EBLWeb/patron/?target=patron&extendedid=P_615876_0 (last access: February 2020),
oCLC: 878863282, 2014. a
Bolibar, J.: JordiBolibar/ALPGM: ALPGM v1.1, https://doi.org/10.5281/zenodo.3609136, 2020. a
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A spatially
resolved estimate of High Mountain Asia glacier mass balances from 2000
to 2016, Nature Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999,
2017. a
Carlson, B. Z., Georges, D., Rabatel, A., Randin, C. F., Renaud, J.,
Delestrade, A., Zimmermann, N. E., Choler, P., and Thuiller, W.: Accounting
for tree line shift, glacier retreat and primary succession in mountain plant
distribution models, Diversity and Distributions, 20, 1379–1391,
https://doi.org/10.1111/ddi.12238,
2014. a
Chollet, F.: Keras, available at: https://keras.io (last access: February 2020), 2015. a
Consortium, R. G. I.: Randolph Glacier Inventory 6.0,
https://doi.org/10.7265/N5-RGI-60,
type: dataset,
2017. a
de Bezenac, E., Pajot, A., and Gallinari, P.: Deep Learning for Physical
Processes: Incorporating Prior Scientific Knowledge,
arXiv:1711.07970 [cs, stat], http://arxiv.org/abs/1711.07970,
arXiv: 1711.07970, 2018. a
Ducournau, A. and Fablet, R.: Deep learning for ocean remote sensing: an
application of convolutional neural networks for super-resolution on
satellite-derived SST data, in: 2016 9th IAPR Workshop on Pattern
Recogniton in Remote Sensing (PRRS), 1–6, IEEE, Cancun, Mexico,
https://doi.org/10.1109/PRRS.2016.7867019,
2016. a
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and
Mérindol, L.: Reanalysis of 44 Yr of Climate in the French Alps
(1958–2002): Methodology, Model Validation, Climatology, and
Trends for Air Temperature and Precipitation, J. Appl.
Meteorol. Climatol., 48, 429–449, https://doi.org/10.1175/2008JAMC1808.1,
2009. a, b
Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier,
V., Rabatel, A., Pitte, P., and Ruiz, L.: Two decades of glacier mass loss
along the Andes, Nature Geosci., https://doi.org/10.1038/s41561-019-0432-5,
2019. a
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion,
F., and Pandit, A.: A consensus estimate for the ice thickness distribution
of all glaciers on Earth, Nature Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3,
2019. a, b, c, d
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a
Gardent, M., Rabatel, A., Dedieu, J.-P., and Deline, P.: Multitemporal glacier
inventory of the French Alps from the late 1960s to the late 2000s,
Global Planet. Change, 120, 24–37,
https://doi.org/10.1016/j.gloplacha.2014.05.004,
2014. a, b
Gerbaux, M., Genthon, C., Etchevers, P., Vincent, C., and Dedieu, J.: Surface
mass balance of glaciers in the French Alps: distributed modeling and
sensitivity to climate change, J. Glaciol., 51, 561–572,
https://doi.org/10.3189/172756505781829133,
2005. a
Hanzer, F., Förster, K., Nemec, J., and Strasser, U.: Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach, Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, 2018. a, b
Hawkins, D. M.: The Problem of Overfitting, Journal of Chemical Information
and Computer Sciences, 44, 1–12, https://doi.org/10.1021/ci0342472,
2004. a
He, K., Zhang, X., Ren, S., and Sun, J.: Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,
2015 IEEE International Conference on Computer Vision (ICCV),
https://doi.org/10.1109/iccv.2015.123,
2015. a
Hock, R.: Temperature index melt modelling in mountain areas, J.
Hydrol., 282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9,
2003. a
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M.,
Radić, V., and Slangen, A. B. A.: GlacierMIP – A model intercomparison
of global-scale glacier mass-balance models and projections, J.
Glaciol., 65, 453–467, https://doi.org/10.1017/jog.2019.22,
2019. a
Hoerl, A. E. and Kennard, R. W.: Ridge Regression: Biased Estimation for
Nonorthogonal Problems, Technometrics, 12, 55–67,
https://doi.org/10.1080/00401706.1970.10488634,
1970. a
Hoinkes, H. C.: Glacier Variation and Weather, J. Glaciol., 7,
3–18, https://doi.org/10.3189/S0022143000020384,
1968. a, b
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012. a, b
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, https://doi.org/10.3389/feart.2015.00054,
2015. a, b, c, d
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nature Clim. Change, 8, 135–140,
https://doi.org/10.1038/s41558-017-0049-x,
2018. a, b
Huss, M., Farinotti, D., Bauder, A., and Funk, M.: Modelling runoff from highly
glacierized alpine drainage basins in a changing climate, Hydrol.
Process., 22, 3888–3902, https://doi.org/10.1002/hyp.7055,
2008. a, b, c
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst. Sci., 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010. a
Huss, M., Hock, R., Bauder, A., and Funk, M.: Conventional versus
reference-surface mass balance, J. Glaciol., 58, 278–286,
https://doi.org/10.3189/2012JoG11J216,
2012. a, b
Ingrassia, S. and Morlini, I.: Neural Network Modeling for Small
Datasets, Technometrics, 47, 297–311, https://doi.org/10.1198/004017005000000058,
2005. a
Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, 2015. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 2018. a
Jiang, G.-Q., Xu, J., and Wei, J.: A Deep Learning Algorithm of Neural
Network for the Parameterization of Typhoon-Ocean Feedback in
Typhoon Forecast Models, Geophys. Res. Lett., 45, 3706–3716,
https://doi.org/10.1002/2018GL077004,
2018. a
Jouvet, G., Huss, M., Blatter, H., Picasso, M., and Rappaz, J.: Numerical
simulation of Rhonegletscher from 1874 to 2100, J. Comput.
Phys., 228, 6426–6439, https://doi.org/10.1016/j.jcp.2009.05.033,
2009. a
Jóhannesson, T., Raymond, C., and Waddington, E.: Time–Scale for
Adjustment of Glaciers to Changes in Mass Balance, J.
Glaciol., 35, 355–369, https://doi.org/10.3189/S002214300000928X,
1989. a
Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A.,
Ganguly, A., Shekhar, S., Samatova, N., and Kumar, V.: Theory-Guided Data
Science: A New Paradigm for Scientific Discovery from Data,
IEEE Transactions on Knowledge and Data Engineering, 29, 2318–2331,
https://doi.org/10.1109/TKDE.2017.2720168,
2017. a
Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., and Chen, G.:
EddyNet: A Deep Neural Network For Pixel-Wise
Classification of Oceanic Eddies, in: IGARSS 2018–2018 IEEE
International Geoscience and Remote Sensing Symposium,
1764–1767, IEEE, Valencia, https://doi.org/10.1109/IGARSS.2018.8518411,
2018. a
Lguensat, R., Sommer, J. L., Metref, S., Cosme, E., and Fablet, R.: Learning
Generalized Quasi-Geostrophic Models Using Deep Neural
Numerical Models, arXiv:1911.08856 [physics, stat],
http://arxiv.org/abs/1911.08856, arXiv: 1911.08856, 2019. a
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012. a
Marçais, J. and de Dreuzy, J.-R.: Prospective Interest of Deep Learning for Hydrological Inference,
Groundwater, 55, 688–692,
https://doi.org/10.1111/gwat.12557,
2017. a
Maussion, F., Gurgiser, W., Großhauser, M., Kaser, G., and Marzeion, B.: ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru, The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015, 2015. a, b
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019. a, b
NSIDC: Global Land Ice Measurements from Space glacier database.
Compiled and made available by the international GLIMS community and the
National Snow and Ice Data Center, 2005. a
Nussbaumer, S., Steiner, D., and Zumbühl, H.: Réseau neuronal et fluctuations
des glaciers dans les Alpes occidentales, available at: https://www.researchgate.net/publication/281755751_Reseau_neuronal_et_fluctuations_des_glaciers_dans_les_Alpes_occidentales (last access: February 2020) 2012. a
Oliveira, M., Torgo, L., and Santos Costa, V.: Evaluation Procedures for
Forecasting with Spatio-Temporal Data, in: Machine Learning and
Knowledge Discovery in Databases, edited by: Berlingerio, M., Bonchi,
F., Gärtner, T., Hurley, N., and Ifrim, G., vol. 11051, pp. 703–718,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-10925-7_43,
2019. a
Olson, M., Wyner, A. J., and Berk, R.: Modern Neural Networks Generalize
on Small Data Sets, NeurIPS, NIPS Proceedings, available at: https://papers.nips.cc/ (last access: February 2020), 2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., and
Louppe, G.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011. a
Rabatel, A., Letréguilly, A., Dedieu, J.-P., and Eckert, N.: Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls, The Cryosphere, 7, 1455–1471, https://doi.org/10.5194/tc-7-1455-2013, 2013. a, b
Rabatel, A., Sanchez, O., Vincent, C., and Six, D.: Estimation of Glacier
Thickness From Surface Mass Balance and Ice Flow Velocities:
A Case Study on Argentière Glacier, France, Front. Earth
Sci., 6, https://doi.org/10.3389/feart.2018.00112,
2018. a, b
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G.:
Regional and global projections of twenty-first century glacier mass changes
in response to climate scenarios from global climate models, Clim.
Dynam., 42, 37–58, https://doi.org/10.1007/s00382-013-1719-7,
2014. a
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid
processes in climate models, P. Natl. Acad. Sci.,
115, 9684–9689, https://doi.org/10.1073/pnas.1810286115,
2018. a
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita,
G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W.,
Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.:
Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure, Ecography, 40, 913–929, https://doi.org/10.1111/ecog.02881,
2017. a, b
Réveillet, M., Rabatel, A., Gillet-Chaulet, F., and Soruco, A.: Simulations of
changes to Glaciar Zongo, Bolivia (16∘ S), over the 21st century
using a 3-D full-Stokes model and CMIP5 climate projections, Ann.
Glaciol., 56, 89–97, https://doi.org/10.3189/2015AoG70A113,
2015. a
Réveillet, M., Vincent, C., Six, D., and Rabatel, A.: Which empirical model is
best suited to simulate glacier mass balances?, J. Glaciol., 63,
39–54, https://doi.org/10.1017/jog.2016.110,
2017. a
Réveillet, M., Six, D., Vincent, C., Rabatel, A., Dumont, M., Lafaysse, M., Morin, S., Vionnet, V., and Litt, M.: Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps), The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, 2018. a, b, c
Seabold, S. and Perktold, J.: Statsmodels: Econometric and Statistical
Modelingwith Python, Proc. of the 9th Python in Science Conf., 2010. a
Shen, C.: A Transdisciplinary Review of Deep Learning Research and
Its Relevance for Water Resources Scientists, Water Resour.
Res., 54, 8558–8593, https://doi.org/10.1029/2018WR022643,
2018. a
Six, D. and Vincent, C.: Sensitivity of mass balance and equilibrium-line
altitude to climate change in the French Alps, J. Glaciol., 60,
867–878, https://doi.org/10.3189/2014JoG14J014,
2014. a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting, J.
Mach. Learn. Res., 15, 1929–1958, 2014. a
Steiner, D., Pauling, A., Nussbaumer, S. U., Nesje, A., Luterbacher, J.,
Wanner, H., and Zumbühl, H. J.: Sensitivity of European glaciers to
precipitation and temperature – two case studies, Clim. Change, 90,
413–441, https://doi.org/10.1007/s10584-008-9393-1,
2008. a, b
Thibert, E., Dkengne Sielenou, P., Vionnet, V., Eckert, N., and Vincent, C.:
Causes of Glacier Melt Extremes in the Alps Since 1949, Geophys.
Res. Lett., 45, 817–825, https://doi.org/10.1002/2017GL076333,
2018. a
Tibshirani, R., Johnstone, I., Hastie, T., and Efron, B.: Least angle
regression, Ann. Stat., 32, 407–499,
https://doi.org/10.1214/009053604000000067,
2004. a
Vincent, C., Fischer, A., Mayer, C., Bauder, A., Galos, S. P., Funk, M.,
Thibert, E., Six, D., Braun, L., and Huss, M.: Common climatic signal from
glaciers in the European Alps over the last 50 years: Common Climatic
Signal in the Alps, Geophys. Res. Lett., 44, 1376–1383,
https://doi.org/10.1002/2016GL072094,
2017.
a
Vincent, C., Peyaud, V., Laarman, O., Six, D., Gilbert, A., Gillet-Chaulet, F.,
Berthier, E., Morin, S., Verfaillie, D., Rabatel, A., Jourdain, B., and
Bolibar, J.: Déclin des deux plus grands glaciers des Alpes françaises au
cours du XXIe sièle: Argentière et Mer de Glace, La
Météorologie, p. 49, https://doi.org/10.4267/2042/70369,
2019. a, b
Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Quéno, L., Seity, Y., and
Bazile, E.: Numerical Weather Forecasts at Kilometer Scale in the
French Alps: Evaluation and Application for Snowpack Modeling,
J. Hydrometeorol., 17, 2591–2614, https://doi.org/10.1175/JHM-D-15-0241.1,
2016. a
Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D.,
Soruco, A., Villacis, M., Yarleque, C., Elison Timm, O., Condom, T.,
Salzmann, N., and Sicart, J.-E.: Rapid decline of snow and ice in the
tropical Andes – Impacts, uncertainties and challenges ahead,
Earth-Sci. Rev., 176, 195–213, https://doi.org/10.1016/j.earscirev.2017.09.019,
2018. a
Weisberg, S.: Applied linear regression, Wiley series in probability and
statistics, Wiley, Hoboken, NJ, fourth edition edn., 2014. a
Whittingham, M. J., Stephens, P. A., Bradbury, R. B., and Freckleton, R. P.:
Why do we still use stepwise modelling in ecology and behaviour?: Stepwise
modelling in ecology and behaviour, J. Anim. Ecol., 75,
1182–1189, https://doi.org/10.1111/j.1365-2656.2006.01141.x,
2006. a
Xu, B., Wang, N., Chen, T., and Li, M.: Empirical Evaluation of Rectified
Activations in Convolutional Network, CoRR, abs/1505.00853, available at:
http://arxiv.org/abs/1505.00853 (last access: February 2020), 2015. a
Zekollari, H. and Huybrechts, P.: Statistical modelling of the surface
mass-balance variability of the Morteratsch glacier, Switzerland: strong
control of early melting season meteorological conditions, J.
Glaciol., 64, 275–288, https://doi.org/10.1017/jog.2018.18,
2018. a
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019. a, b
Zemp, M., Haeberli, W., Hoelzle, M., and Paul, F.: Alpine glaciers to disappear
within decades?, Geophys. Res. Lett., 33,
https://doi.org/10.1029/2006GL026319,
2006. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul,
F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes
and their contributions to sea-level rise from 1961 to 2016, Nature, 568,
382–386, https://doi.org/10.1038/s41586-019-1071-0,
2019. a
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.
We introduce a novel approach for simulating glacier mass balances using a deep artificial...