Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-565-2020
https://doi.org/10.5194/tc-14-565-2020
Research article
 | 
13 Feb 2020
Research article |  | 13 Feb 2020

Deep learning applied to glacier evolution modelling

Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet

Model code and software

JordiBolibar/ALPGM: ALPGM v1.1 J. Bolibar https://doi.org/10.5281/zenodo.3609136

Download
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.