Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-497-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-497-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pan-Antarctic map of near-surface permafrost temperatures at 1 km2 scale
Department of Geosciences, University of Oslo, Oslo, Sem Sælands vei 1, 0371 Oslo, Norway
Sebastian Westermann
Department of Geosciences, University of Oslo, Oslo, Sem Sælands vei 1, 0371 Oslo, Norway
Gonçalo Vieira
Centre for Geographical Studies, Institute of Geography and Spatial
Planning, University of Lisbon, R. Branca Edmée Marques, 1600-276
Lisbon, Portugal
Andrey Abramov
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia
Megan Ruby Balks
Department of Earth and Ocean Sciences, University of Waikato,
Private Bag 3105, Hamilton, New Zealand
Annett Bartsch
Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 39,
Vienna, Austria
now at: b.geos GmbH, Vienna, Industriestraße 1 2100, Korneuburg,
Austria
Filip Hrbáček
Department of Geography, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
Andreas Kääb
Department of Geosciences, University of Oslo, Oslo, Sem Sælands vei 1, 0371 Oslo, Norway
Miguel Ramos
Department of Physics and Mathematics, University of Alcalá, Campus universitario, 28805 Alcalá de Henares, Madrid, Spain
Related authors
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972, https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Short summary
In permafrost environments, the ground surface moves due to the formation and melt of ice in the ground. This study compares ground surface displacements measured from satellite images against field data of ground ice contents. We find good agreement between the detected seasonal subsidence and observed ground ice melt. Our results show the potential of satellite remote sensing for mapping ground ice variability, but also indicate that ice in excess of the pore space must be considered.
Robin Benjamin Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
Biogeosciences, 21, 5059–5077, https://doi.org/10.5194/bg-21-5059-2024, https://doi.org/10.5194/bg-21-5059-2024, 2024
Short summary
Short summary
Intense grazing at grassland sites removes vegetation, reduces the snow cover, and inhibits litter layers from forming. Grazed sites generally have a larger annual ground surface temperature amplitude than ungrazed sites, but the net effect depends on effects in the transitional seasons. Our results also suggest that seasonal use of pastures can reduce ground temperatures, which can be a strategy to protect currently degrading grassland permafrost.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Tomáš Uxa, Filip Hrbáček, and Michaela Kňažková
EGUsphere, https://doi.org/10.5194/egusphere-2024-2989, https://doi.org/10.5194/egusphere-2024-2989, 2024
Short summary
Short summary
We devised two simple models for estimating the mean annual permafrost table temperature and active-layer thickness, which are driven solely by temperatures measured in the active layer; no ground physical properties are required. The models showed deviations of less than 0.03 °C and 5 %, and can therefore be useful tools for permafrost modelling under a wide range of environmental conditions.
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024, https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Land cover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel land-cover-monitoring scheme. Land cover information provides specific information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
EGUsphere, https://doi.org/10.5194/egusphere-2024-2356, https://doi.org/10.5194/egusphere-2024-2356, 2024
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2393, https://doi.org/10.5194/egusphere-2024-2393, 2024
Short summary
Short summary
This study presents for the first time a robust methodological approach to detect and analyse rock glacier kinematics using 24 years of Landsat 7/8 imagery. Within a small region in the semi-arid andes, 382 movements were monitored showing an average velocity of 0.3 ± 0.07 m yr-1, with rock glaciers moving faster. We highlight the value of integrating optical imagery and radar interferometry supporting monitoring of rock glacier kinematics, using available medium-resolution optical imagery.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-2518, https://doi.org/10.5194/egusphere-2024-2518, 2024
Short summary
Short summary
We developed a robust freeze/thaw detection approach, applying a constant threshold on Copernicus Sentinel-1 data, that is suitable for tundra regions. All global, coarser resolution products, tested with the resulting benchmarking dataset, are of value for freeze/thaw retrieval, although differences were found depending on seasons, in particular during spring and autumn transition.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Preprint under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024, https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Short summary
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia, we find that post-industrialization permafrost warming has three "hotspots" in NE Canada, N Alaska, and W Siberia. The extent of near-surface permafrost has decreased substantially since 1850, with the largest area losses occurring in the last 50 years. The simulations also show that volcanic eruptions have in some cases counteracted the loss of near-surface permafrost for a few decades.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2950, https://doi.org/10.5194/egusphere-2023-2950, 2023
Preprint archived
Short summary
Short summary
This study looked at under the ground on Svalbard, an archipelago close to the North Pole. We found something very surprising – there is water under the all year around frozen soil. This was not known before. This water could be used for drinking if we manage it carefully. This is important because getting clean drinking water is very difficult in Svalbard, and other Arctic places. Also, because the climate is getting warmer, there might be even more water underground in the future.
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023, https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Short summary
It is now well known from long-term temperature measurements that Arctic permafrost, i.e., ground that remains continuously frozen for at least 2 years, is warming in response to climate change. Temperature, however, only tells half of the story. In this study, we use computer modeling to better understand how the thawing and freezing of water in the ground affects the way permafrost responds to climate change and what temperature trends can and cannot tell us about how permafrost is changing.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
C. Soncco, G. Vieira, G. Goyanes, and E. Castro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 553–558, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-553-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-553-2022, 2022
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Short summary
We intensely investigated the Gruben site in the Swiss Alps, where glaciers and permafrost landforms closely interact, to better understand cold-climate environments. By the interpretation of air photos from 5 decades, we describe long-term developments of the existing landforms. In combination with high-resolution positioning measurements and ground surface temperatures, we were also able to link these to short-term changes and describe different landform responses to climate forcing.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Tazio Strozzi, Andreas Wiesmann, Andreas Kääb, Thomas Schellenberger, and Frank Paul
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-44, https://doi.org/10.5194/essd-2022-44, 2022
Revised manuscript not accepted
Short summary
Short summary
Knowledge on surface velocity of glaciers and ice caps contributes to a better understanding of a wide range of processes related to glacier dynamics, mass change and response to climate. Based on the release of historical satellite radar data from various space agencies we compiled nearly complete mosaics of winter ice surface velocities for the 1990's over the Eastern Arctic. Compared to the present state, we observe a general increase of ice velocities along with a retreat of glacier fronts.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021, https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021, https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
Short summary
It is important to understand how permafrost landscapes respond to climate changes because their thaw can contribute to global warming. We investigate how a common permafrost morphology degrades using both field observations of the surface elevation and numerical modeling. We show that numerical models accounting for topographic changes related to permafrost degradation can reproduce the observed changes in nature and help us understand how parameters such as snow influence this phenomenon.
Gonçalo Vieira, Carla Mora, Pedro Pina, Ricardo Ramalho, and Rui Fernandes
Earth Syst. Sci. Data, 13, 3179–3201, https://doi.org/10.5194/essd-13-3179-2021, https://doi.org/10.5194/essd-13-3179-2021, 2021
Short summary
Short summary
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important hazards to local populations and at a regional level. The last eruption occurred from November 2014 to February 2015. A survey of the Chã das Caldeiras area was conducted using a fixed-wing unmanned aerial vehicle. A point cloud, digital surface model and orthomosaic with 10 and 25 cm resolutions are provided, together with the full aerial survey projects and datasets.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Tomáš Uxa, Marek Křížek, and Filip Hrbáček
Geosci. Model Dev., 14, 1865–1884, https://doi.org/10.5194/gmd-14-1865-2021, https://doi.org/10.5194/gmd-14-1865-2021, 2021
Short summary
Short summary
We present a simple model that derives palaeo-air temperature characteristics related to the palaeo-active-layer thickness, which can be recognized using many relict periglacial features found in past permafrost regions. Its evaluation against modern temperature records and an experimental palaeo-air temperature reconstruction showed relatively high model accuracy, which suggests that it could become a useful tool for reconstructing Quaternary palaeo-environments.
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021, https://doi.org/10.5194/tc-15-1399-2021, 2021
Short summary
Short summary
We used a numerical model to investigate how small-scale landscape heterogeneities affect permafrost thaw under climate-warming scenarios. Our results show that representing small-scale heterogeneities in the model can decide whether a landscape is water-logged or well-drained in the future. This in turn affects how fast permafrost thaws under warming. Our research emphasizes the importance of considering small-scale processes in model assessments of permafrost thaw under climate change.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Filip Hrbáček, Zbyněk Engel, Michaela Kňažková, and Jana Smolíková
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-5, https://doi.org/10.5194/tc-2021-5, 2021
Preprint withdrawn
Short summary
Short summary
This manuscript assesses the effect of the ephemeral snow cover occurring during high summer on ground thermal regime and active layer thickness in the cold environment of James Ross Island on Antarctic Peninsula region. We found that even short-term occurrence of relatively thick snow (> 20 cm) can significantly affect ground thermal conditions and consequently reduce the active layer thaw depth by ca 10 % when compare to snow-free conditions.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Rosa M. Poch, Lucia H. C. dos Anjos, Rafla Attia, Megan Balks, Adalberto Benavides-Mendoza, Martha M. Bolaños-Benavides, Costanza Calzolari, Lydia M. Chabala, Peter C. de Ruiter, Samuel Francke-Campaña, Fernando García Préchac, Ellen R. Graber, Siosiua Halavatau, Kutaiba M. Hassan, Edmond Hien, Ke Jin, Mohammad Khan, Maria Konyushkova, David A. Lobb, Matshwene E. Moshia, Jun Murase, Generose Nziguheba, Ashok K. Patra, Gary Pierzynski, Natalia Rodríguez Eugenio, and Ronald Vargas Rojas
SOIL, 6, 541–547, https://doi.org/10.5194/soil-6-541-2020, https://doi.org/10.5194/soil-6-541-2020, 2020
Short summary
Short summary
Humanity depends on the existence of healthy soils, both for the production of food and for ensuring a healthy, biodiverse environment. In the face of global crises like the COVID-19 pandemic, a sustainable soil management strategy is essential to ensure food security based on more diverse, locally oriented, and resilient food production systems through improving access to land, sound land use planning, sustainable soil management, enhanced research, and investment in education and extension.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary
Short summary
A 2-D automated electrical resistivity tomography (A-ERT) system was installed for the first time in Antarctica at Deception Island to (i) monitor subsurface freezing and thawing processes on a daily and seasonal basis and map the spatial and temporal variability of thaw depth and to (ii) study the impact of short-lived extreme meteorological events on active layer dynamics.
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, https://doi.org/10.5194/hess-23-4717-2019, 2019
Short summary
Short summary
In this paper we address one of the big challenges in snow hydrology, namely the accurate simulation of the seasonal snowpack in ungauged regions. We do this by assimilating satellite observations of snow cover into a modelling framework. Importantly (and a novelty of the paper), we include a clustering approach that permits highly efficient ensemble simulations. Efficiency gains and dependency on purely global datasets, means that this method can be applied over large areas anywhere on Earth.
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Short summary
Glacier growth such as that found on the Tibetan Plateau (TP) is counterintuitive in a warming world. Climate models and meteorological data are conflicting about the reasons for this glacier anomaly. We quantify the glacier changes in High Mountain Asia using satellite laser altimetry as well as the growth of over 1300 inland lakes on the TP. Our study suggests that increased summer precipitation is likely the largest contributor to the recently observed increases in glacier and lake masses.
Florence Magnin, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, Paula Hilger, and Reginald L. Hermanns
Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019, https://doi.org/10.5194/esurf-7-1019-2019, 2019
Short summary
Short summary
This study proposes the first permafrost (i.e. ground with temperature permanently < 0 °C) map covering the steep rock slopes of Norway. It was created by using rock temperature data collected at the near surface of 25 rock walls spread across the country between 2010 and 2018. The map shows that permafrost mostly exists above 1300–1400 m a.s.l. in southern Norway and close to sea level in northern Norway. The results have strong potential for the study of rock wall sliding and failure.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
Lei Cai, Hanna Lee, Sebastian Westermann, and Kjetil Schanke Aas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-230, https://doi.org/10.5194/tc-2019-230, 2019
Preprint withdrawn
Short summary
Short summary
We develop a sub-grid representation of excess ground ice in the Community Land Model (CLM) by adding three landunits to the original CLM sub-grid hierarchy, in order to prescribe three different excess ice conditions in one grid cell. Single-grid simulations verify the potential of the model development on better projecting excess ice melt in a warming climate. Global simulations recommend the proper way of applying the model development with the existing excess ice dataset.
B. Altena, O. N. Haga, C. Nuth, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019, https://doi.org/10.5194/tc-13-1089-2019, 2019
Short summary
Short summary
We studied the stability of ice wedges (massive bodies of ground ice in permafrost) under recent climatic conditions in the Lena River delta of northern Siberia. For this we used a novel modelling approach that takes into account lateral transport of heat, water, and snow and the subsidence of the ground surface due to melting of ground ice. We found that wetter conditions have a destabilizing effect on the ice wedges and associated our simulation results with observations from the study area.
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Short summary
Estimating glacier changes involves measuring elevation changes, often using elevation models derived from satellites. Many elevation models have data gaps (voids), which affect estimates of glacier change. We compare 11 methods for interpolating voids, finding that some methods bias estimates of glacier change by up to 20 %, though most methods have a smaller effect. Some methods produce reliable results even with large void areas, suggesting that noisy elevation data are still useful.
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary
Short summary
Many glaciers in southern Alaska and the Yukon experience changes in flow speed, which occur in episodes or sporadically. These flow changes can be measured with satellites, but the resulting raw velocity products are messy. Thus in this study we developed an automatic method to produce a synthesized velocity product over a large glacier region of roughly 600 km by 200 km. Velocities are at a monthly resolution and at 300 m resolution, making all kinds of glacier dynamics observable.
Kjetil S. Aas, Léo Martin, Jan Nitzbon, Moritz Langer, Julia Boike, Hanna Lee, Terje K. Berntsen, and Sebastian Westermann
The Cryosphere, 13, 591–609, https://doi.org/10.5194/tc-13-591-2019, https://doi.org/10.5194/tc-13-591-2019, 2019
Short summary
Short summary
Many permafrost landscapes contain large amounts of excess ground ice, which gives rise to small-scale elevation differences. This results in lateral fluxes of snow, water, and heat, which we investigate and show how it can be accounted for in large-scale models. Using a novel model technique which can account for these differences, we are able to model both the current state of permafrost and how these landscapes change as permafrost thaws, in a way that could not previously be achieved.
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018, https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
Short summary
Historical surveys performed through the use of aerial photography gave us the first maps of the Arctic. Nearly a century later, a renewed interest in studying the Arctic is rising from the need to understand and quantify climate change. It is therefore time to dig up the archives and extract the maximum of information from the images using the most modern methods. In this study, we show that the aerial survey of Svalbard in 1936–38 provides us with valuable data on the archipelago's glaciers.
Adrien Gilbert, Silvan Leinss, Jeffrey Kargel, Andreas Kääb, Simon Gascoin, Gregory Leonard, Etienne Berthier, Alina Karki, and Tandong Yao
The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, https://doi.org/10.5194/tc-12-2883-2018, 2018
Short summary
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
Christine Kroisleitner, Annett Bartsch, and Helena Bergstedt
The Cryosphere, 12, 2349–2370, https://doi.org/10.5194/tc-12-2349-2018, https://doi.org/10.5194/tc-12-2349-2018, 2018
Short summary
Short summary
Knowledge about permafrost extent is required with respect to climate change. We used borehole temperature records from across the Arctic for the assessment of surface status information (frozen or unfrozen) derived from space-borne microwave sensors for permafrost extent mapping. The comparison to mean annual ground temperature (MAGT) at the coldest sensor depth revealed that not only extent but also temperature can be obtained from C-band-derived surface state with a residual error of 2.22 °C.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Chiyuki Narama, Mirlan Daiyrov, Murataly Duishonakunov, Takeo Tadono, Hayato Sato, Andreas Kääb, Jinro Ukita, and Kanatbek Abdrakhmatov
Nat. Hazards Earth Syst. Sci., 18, 983–995, https://doi.org/10.5194/nhess-18-983-2018, https://doi.org/10.5194/nhess-18-983-2018, 2018
Short summary
Short summary
Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock, as well as destroying property and crops. Due to their subsurface outlet, we refer to these short-lived glacial lakes as being of the
tunnel-type, a type that drastically grows and drains over a few months.
Solveig H. Winsvold, Andreas Kääb, Christopher Nuth, Liss M. Andreassen, Ward J. J. van Pelt, and Thomas Schellenberger
The Cryosphere, 12, 867–890, https://doi.org/10.5194/tc-12-867-2018, https://doi.org/10.5194/tc-12-867-2018, 2018
Julia Boike, Inge Juszak, Stephan Lange, Sarah Chadburn, Eleanor Burke, Pier Paul Overduin, Kurt Roth, Olaf Ippisch, Niko Bornemann, Lielle Stern, Isabelle Gouttevin, Ernst Hauber, and Sebastian Westermann
Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, https://doi.org/10.5194/essd-10-355-2018, 2018
Short summary
Short summary
A 20-year data record from the Bayelva site at Ny-Ålesund, Svalbard, is presented on meteorology, energy balance components, surface and subsurface observations. This paper presents the data set, instrumentation, calibration, processing and data quality control. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation and loss of permafrost at this site.
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
B. Altena, A. Mousivand, J. Mascaro, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 7–11, https://doi.org/10.5194/isprs-archives-XLII-3-W3-7-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-7-2017, 2017
Gonçalo Vieira, Carla Mora, and Ali Faleh
The Cryosphere, 11, 1691–1705, https://doi.org/10.5194/tc-11-1691-2017, https://doi.org/10.5194/tc-11-1691-2017, 2017
Short summary
Short summary
The Toubkal is the highest massif in North Africa (4167 m). Landforms and deposits above 3000 m show the effects of frost action in the present-day geomorphological dynamics, but data on ground temperatures were lacking. In this study ground surface temperature data measured across an altitudinal transect are presented and analysed for the first time. The highlight is the possible occurrence of permafrost at an elevation of 3800 m, which may be of high ecological and hydrological significance.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Nat. Hazards Earth Syst. Sci., 17, 627–639, https://doi.org/10.5194/nhess-17-627-2017, https://doi.org/10.5194/nhess-17-627-2017, 2017
Short summary
Short summary
We evaluate for the first time a new class of optical satellite images for measuring Earth surface displacements due to earthquakes – images from cubesats. The PlanetScope cubesats used in this study are 10 cm × 10 cm × 30 cm small and standardized satellites. Around 120 of these cubesats orbit around Earth and are about to provide daily 2–4 m resolution images of the entire land surface of the Earth.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Tazio Strozzi, Andreas Kääb, and Thomas Schellenberger
The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194/tc-11-553-2017, 2017
Short summary
Short summary
The strong atmospheric warming observed since the 1990s in polar regions requires quantifying the contribution to sea level rise of glaciers and ice caps, but for large areas we do not have much information on ice dynamic fluctuations. The recent increase in satellite data opens up new possibilities to monitor ice flow. We observed over Stonebreen on Edgeøya (Svalbard) a strong increase since 2012 in ice surface velocity along with a decrease in volume and an advance in frontal extension.
Barbara Widhalm, Annett Bartsch, Marina Leibman, and Artem Khomutov
The Cryosphere, 11, 483–496, https://doi.org/10.5194/tc-11-483-2017, https://doi.org/10.5194/tc-11-483-2017, 2017
Short summary
Short summary
The active layer above the permafrost, which seasonally thaws during summer, is an important parameter for monitoring the state of permafrost. Its thickness is typically measured locally. The relationship between active-layer thickness (ALT) and X-band SAR backscatter of TerraSAR-X has been investigated in order to explore the possibility of delineating ALT with continuous and larger spatial coverage.
Thomas Schellenberger, Thorben Dunse, Andreas Kääb, Thomas Vikhamar Schuler, Jon Ove Hagen, and Carleen H. Reijmer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-5, https://doi.org/10.5194/tc-2017-5, 2017
Preprint withdrawn
Short summary
Short summary
Basin-3, NE-Svalbard, was still surging with 10 m d-1 in July 2016. After a speed peak of 18.8 m d-1 in Dec 2012/Jan 2013, speed-ups are overlying the fast flow every summer. The glacier is massively calving icebergs (5.2 Gt yr-1 ~ 2 L drinking water for every human being daily!) which in the same order of magnitude as all other Svalbard glaciers together.
Since autumn 2015 also Basin-2 is surging with maximum velocities of 8.7 m d-1, an advance of more than 2 km and a mass loss of 0.7 Gt yr-1.
Carla Mora, Juan Javier Jiménez, Pedro Pina, João Catalão, and Gonçalo Vieira
The Cryosphere, 11, 139–155, https://doi.org/10.5194/tc-11-139-2017, https://doi.org/10.5194/tc-11-139-2017, 2017
Short summary
Short summary
We evaluate the use of high-resolution microwave satellite images from TerraSAR-X for mapping snow-patch distribution in ice-free areas of the maritime Antarctic (King George Island). The imagery was acquired simultaneously to ground truthing of snow. Image classification resulted in very high accuracy when discriminating between snow, water and bare ground. The method provides a solution for characterizing the snowmelt patterns in the ice-free areas of the Antarctic Peninsula.
Amund F. Borge, Sebastian Westermann, Ingvild Solheim, and Bernd Etzelmüller
The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, https://doi.org/10.5194/tc-11-1-2017, 2017
Short summary
Short summary
Palsas and peat plateaus are permafrost landforms in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. We have systematically mapped the occurrence of palsas and peat plateaus in northern Norway by interpretation of aerial images from the 1950s until today. The results show that about half of the area of palsas and peat plateaus has disappeared due to lateral erosion and melting of ground ice in the last 50 years.
Annett Bartsch, Barbara Widhalm, Peter Kuhry, Gustaf Hugelius, Juri Palmtag, and Matthias Benjamin Siewert
Biogeosciences, 13, 5453–5470, https://doi.org/10.5194/bg-13-5453-2016, https://doi.org/10.5194/bg-13-5453-2016, 2016
Short summary
Short summary
A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR) data from the ENVISAT satellite. It can be shown that measurements of C-band SAR under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. The approach provides the first spatially consistent account of soil organic carbon across the Arctic.
Désirée Treichler and Andreas Kääb
The Cryosphere, 10, 2129–2146, https://doi.org/10.5194/tc-10-2129-2016, https://doi.org/10.5194/tc-10-2129-2016, 2016
Short summary
Short summary
Satellite data are often the only source of information on mountain glaciers. We show that data from ICESat laser satellite can accurately reflect glacier volume development in 2003–2008, also for individual years. We detect a spatially varying elevation bias in commonly used data sets, and provide a correction that strongly increases the significance of the glacier change estimates – a crucial driver of climate-induced meltwater changes that directly affect the life of lowland populations.
Kjersti Gisnås, Sebastian Westermann, Thomas Vikhamar Schuler, Kjetil Melvold, and Bernd Etzelmüller
The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, https://doi.org/10.5194/tc-10-1201-2016, 2016
Short summary
Short summary
In wind exposed areas snow redistribution results in large spatial variability in ground temperatures. In these areas, the ground temperature of a grid cell must be determined based on the distribution, and not the average, of snow depths. We employ distribution functions of snow in a regional permafrost model, showing highly improved representation of ground temperatures. By including snow distributions, we find the permafrost area to be nearly twice as large as what is modelled without.
Klaus Haslinger and Annett Bartsch
Hydrol. Earth Syst. Sci., 20, 1211–1223, https://doi.org/10.5194/hess-20-1211-2016, https://doi.org/10.5194/hess-20-1211-2016, 2016
Short summary
Short summary
Gridded fields of daily max. and min. temperatures for the Austrian domain are used to calculate ET0 based on a re-calibrated Hargreaves method. Newly derived, station-based calibration parameters, with Penman–Monteith ET0 as a reference, show a distinct altitude and seasonal dependence. Theses features are used to interpolate the new calibration values in space and time onto the temperature grids. The ET0 is then calculated based on the entire gridded temperature data starting back in 1961.
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, https://doi.org/10.5194/gmd-9-523-2016, 2016
Short summary
Short summary
Thawing of permafrost is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. We present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes.
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Short summary
Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and surface speeds reached up to 3.2m d-1 at Kronebreen in summer 2013 and 2.7m d-1 at Kongsbreen in late autumn 2012 as retrieved from SAR satellite data. Both glaciers retreated significantly during the observation period, Kongsbreen up to 1800m or 2.5km2 and Kronebreen up to 850m or 2.8km2. Both glaciers are important contributors to the total dynamic mass loss from the Svalbard archipelago.
S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller
The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015, https://doi.org/10.5194/tc-9-1303-2015, 2015
Short summary
Short summary
We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.
S. Westermann, B. Elberling, S. Højlund Pedersen, M. Stendel, B. U. Hansen, and G. E. Liston
The Cryosphere, 9, 719–735, https://doi.org/10.5194/tc-9-719-2015, https://doi.org/10.5194/tc-9-719-2015, 2015
Short summary
Short summary
The development of ground temperatures in permafrost areas is influenced by many factors varying on different spatial and temporal scales. We present numerical simulations of ground temperatures for the Zackenberg valley in NE Greenland, which take into account the spatial variability of snow depths, surface and ground properties at a scale of 10m. The ensemble of the model grid cells suggests a spatial variability of annual average ground temperatures of up to 5°C.
A. Kääb, D. Treichler, C. Nuth, and E. Berthier
The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, https://doi.org/10.5194/tc-9-557-2015, 2015
Short summary
Short summary
Based on satellite laser altimetry over the Pamir--Karakoram Himalaya we detect strongest elevation losses over east Nyainqentanglha Shan and Spiti--Lahaul but slight elevation gains over west Kunlun Shan rather than over Karakoram. The current sea-level contribution of Pamir--Karakoram Himalaya glaciers is about 10% of the total global contribution of glaciers outside the ice sheets. We also improve estimates of glacier imbalance contribution to river discharge in the Himalayas.
M. Langer, S. Westermann, K. Walter Anthony, K. Wischnewski, and J. Boike
Biogeosciences, 12, 977–990, https://doi.org/10.5194/bg-12-977-2015, https://doi.org/10.5194/bg-12-977-2015, 2015
Short summary
Short summary
Methane production rates of Arctic ponds during the freezing period within a typical tundra landscape in northern Siberia are presented. Production rates were inferred by inverse modeling based on measured methane concentrations in the ice cover. Results revealed marked differences in early winter methane production among ponds showing different stages of shore degradation. This suggests that shore erosion can increase methane production of Arctic ponds by 2 to 3 orders of magnitude.
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, https://doi.org/10.5194/tc-9-197-2015, 2015
J. Lüers, S. Westermann, K. Piel, and J. Boike
Biogeosciences, 11, 6307–6322, https://doi.org/10.5194/bg-11-6307-2014, https://doi.org/10.5194/bg-11-6307-2014, 2014
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, https://doi.org/10.5194/tc-8-2063-2014, 2014
M. Oliva, G. Vieira, P. Pina, P. Pereira, M. Neves, and M. C. Freitas
Solid Earth, 5, 901–914, https://doi.org/10.5194/se-5-901-2014, https://doi.org/10.5194/se-5-901-2014, 2014
M. A. de Pablo, M. Ramos, and A. Molina
Solid Earth, 5, 721–739, https://doi.org/10.5194/se-5-721-2014, https://doi.org/10.5194/se-5-721-2014, 2014
A. Kääb, L. Girod, and I. Berthling
The Cryosphere, 8, 1041–1056, https://doi.org/10.5194/tc-8-1041-2014, https://doi.org/10.5194/tc-8-1041-2014, 2014
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson
The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, https://doi.org/10.5194/tc-7-1603-2013, 2013
I. Gouttevin, A. Bartsch, G. Krinner, and V. Naeimi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11241-2013, https://doi.org/10.5194/hessd-10-11241-2013, 2013
Manuscript not accepted for further review
J. Gardelle, E. Berthier, Y. Arnaud, and A. Kääb
The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, https://doi.org/10.5194/tc-7-1263-2013, 2013
S. Westermann, T. V. Schuler, K. Gisnås, and B. Etzelmüller
The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, https://doi.org/10.5194/tc-7-719-2013, 2013
Related subject area
Discipline: Frozen ground | Subject: Antarctic
Employing automated electrical resistivity tomography for detecting short- and long-term changes in permafrost and active-layer dynamics in the maritime Antarctic
Thermal legacy of a large paleolake in Taylor Valley, East Antarctica, as evidenced by an airborne electromagnetic survey
Detailed detection of active layer freeze–thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica)
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Krista F. Myers, Peter T. Doran, Slawek M. Tulaczyk, Neil T. Foley, Thue S. Bording, Esben Auken, Hilary A. Dugan, Jill A. Mikucki, Nikolaj Foged, Denys Grombacher, and Ross A. Virginia
The Cryosphere, 15, 3577–3593, https://doi.org/10.5194/tc-15-3577-2021, https://doi.org/10.5194/tc-15-3577-2021, 2021
Short summary
Short summary
Lake Fryxell, Antarctica, has undergone hundreds of meters of change in recent geologic history. However, there is disagreement on when lake levels were higher and by how much. This study uses resistivity data to map the subsurface conditions (frozen versus unfrozen ground) to map ancient shorelines. Our models indicate that Lake Fryxell was up to 60 m higher just 1500 to 4000 years ago. This amount of lake level change shows how sensitive these systems are to small changes in temperature.
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary
Short summary
A 2-D automated electrical resistivity tomography (A-ERT) system was installed for the first time in Antarctica at Deception Island to (i) monitor subsurface freezing and thawing processes on a daily and seasonal basis and map the spatial and temporal variability of thaw depth and to (ii) study the impact of short-lived extreme meteorological events on active layer dynamics.
Cited articles
Ambrozova, K., Laska, K., Hrbacek, F., Kavan, J., and Ondruch, J.: Air
temperature and lapse rate variation in the ice-free and glaciated areas of
northern James Ross Island, Antarctic Peninsula, during 2013–2016,
Int. J. Climatol., 39, 643–657, https://doi.org/10.1002/joc.5832,
2019.
Beer, C.: Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D
Soil Processes and Future Climate Projections, Front. Earth Sci., 4, 1–7,
https://doi.org/10.3389/feart.2016.00081, 2016.
Bintanja, R. and Reijmer, C. H.: A simple parameterization for snowdrift
sublimation over Antarctic snow surfaces, J. Geophys. Res.-Atmos., 106, 31739–31748, https://doi.org/10.1029/2000JD000107, 2001.
Bockheim, J. G., Campbell, I. B., and McLeod, M.: Permafrost distribution and
active-layer depths in the McMurdo Dry Valleys, Antarctica, Permafrost
Periglac., 18, 217–227, https://doi.org/10.1002/ppp.588, 2007.
Bockheim, J. G., Campbell, I. B., Guglielmin, M., and López-Martınez,
J.: Distribution of permafrost types and buried ice in icefree areas of
Antarctica, in: 9th International Conference on Permafrost, 28 June–3 July 2008, Proceedings,
University of Alaska Press, Fairbanks, USA, 125–130, 2008.
Bockheim, J. G., Vieira, G., Ramos, M., López-Martínez, J., Serrano,
E., Guglielmin, M., Wilhelm, K., and Nieuwendam, A.: Climate warming and
permafrost dynamics in the Antarctic Peninsula region, Global Planet.
Change, 100, 215–223, https://doi.org/10.1016/j.gloplacha.2012.10.018, 2013.
Burton-Johnson, A., Black, M., Fretwell, P. T., and Kaluza-Gilbert, J.: An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent, The Cryosphere, 10, 1665–1677, https://doi.org/10.5194/tc-10-1665-2016, 2016.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), US Geological Survey, Reston, Virginia, USA, 2011.
Decker, E. R. and Bucher, G. J.: Geothermal studies in Antarctica, Antarct.
J. U. S., United States, 12:4, available at:
https://www.osti.gov/biblio/6112190 (last access: 30 September 2019), 1977.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J.
Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Pablo, M. A., Ramos, M., and Molina, A.: Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica, Solid Earth, 5, 721–739, https://doi.org/10.5194/se-5-721-2014, 2014.
de Pablo, M. A., Ramos, M.. and Molina, A.: Snow cover evolution, on
2009–2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston
Island, Antarctica, CATENA, 149, 538–547,
https://doi.org/10.1016/j.catena.2016.06.002, 2017.
Ferreira, A., Vieira, G., Ramos, M., and Nieuwendam, A.: Ground temperature
and permafrost distribution in Hurd Peninsula (Livingston Island, Maritime
Antarctic): An assessment using freezing indexes and TTOP modelling, CATENA,
149, 560–571, https://doi.org/10.1016/j.catena.2016.08.027, 2017.
Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, 2014.
Gallée, H.: Simulation of blowing snow over the Antarctic ice sheet,
Ann. Glaciol., 26, 203–206, https://doi.org/10.3189/1998AoG26-1-203-206, 1998.
Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T. V., and
Westermann, S.: CryoGRID 1.0: Permafrost Distribution in Norway estimated by
a Spatial Numerical Model, Permafrost Periglac., 24,
2–19, https://doi.org/10.1002/ppp.1765, 2013.
Gisnås, K., Westermann, S., Schuler, T. V., Litherland, T., Isaksen, K., Boike, J., and Etzelmüller, B.: A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover, The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, 2014.
Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and Etzelmüller, B.: Small-scale variation of snow in a regional permafrost model, The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, 2016.
Greene, S. W., Gressitt, J., Koob, D., Llano, G., Rudolf, E. D., Singer, R.,
Sreere, W. C., and Ugolini, F. C.: Terrestrial life of Antarctica. Antarctic
Map Folio Series, Nat. Geogr. Soc., New York, USA, 1967.
Guglielmin, M.: Ground surface temperature (GST), active layer and
permafrost monitoring in continental Antarctica, Permafrost Periglac., 17, 133–143, https://doi.org/10.1002/ppp.553, 2006.
Guglielmin, M.: Advances in permafrost and periglacial research in
Antarctica: A review, Geomorphology, 155–156, 1–6,
https://doi.org/10.1016/j.geomorph.2011.12.008, 2012.
Guglielmin, M., Balks, M. R., Adlam, L. S., and Baio, F.: Permafrost thermal
regime from two 30-m deep boreholes in southern victoria land, antarctica,
Permafrost Periglac., 22, 129–139, https://doi.org/10.1002/ppp.715,
2011.
Guglielmin, M., Worland, M. R., and Cannone, N.: Spatial and temporal
variability of ground surface temperature and active layer thickness at the
margin of maritime Antarctica, Signy Island, Geomorphology, 155–156,
20–33, https://doi.org/10.1016/j.geomorph.2011.12.016, 2012.
Guglielmin, M., Worland, M. R., Baio, F., and Convey, P.: Permafrost and snow
monitoring at Rothera Point (Adelaide Island, Maritime Antarctica):
Implications for rock weathering in cryotic conditions, Geomorphology, 225,
47–56, https://doi.org/10.1016/j.geomorph.2014.03.051, 2014.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF
newsletter, 147, 5–6, 2016.
Hevesi, J. A., Istok, J. D., and Flint, A. L.: Precipitation Estimation in
Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural
Analysis, J. Appl. Meteorol., 31, 661–676,
https://doi.org/10.1175/1520-0450(1992)031<0661:PEIMTU>2.0.CO;2,
1992.
Hrbáček, F., Láska, K., and Engel, Z.: Effect of Snow Cover on
the Active-Layer Thermal Regime – A Case Study from James Ross Island,
Antarctic Peninsula, Permafrost Periglac., 27, 307–315,
https://doi.org/10.1002/ppp.1871, 2016.
Hrbáček, F., Kňažková, M., Nývlt, D., Láska, K.,
Mueller, C. W., and Ondruch, J.: Active layer monitoring at CALM-S site near
J.G. Mendel Station, James Ross Island, eastern Antarctic Peninsula, Sci. Total Environ., 601–602, 987–997,
https://doi.org/10.1016/j.scitotenv.2017.05.266, 2017a.
Hrbáček, F., Nývlt, D., and Láska, K.: Active layer thermal
dynamics at two lithologically different sites on James Ross Island, Eastern
Antarctic Peninsula, CATENA, 149, 592–602,
https://doi.org/10.1016/j.catena.2016.06.020, 2017b.
Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M.,
de Pablo, M. Á., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I.,
Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E.,
Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin,
J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin,
N., and Miamin, V.: Active layer monitoring in Antarctica: an overview of
results from 2006 to 2015, Polar Geogr., Taylor & Francis, 1–15,
https://doi.org/10.1080/1088937X.2017.1420105, 2018.
Humlum, O., Instanes, A., and Sollid, J. L.: Permafrost in Svalbard: a review
of research history, climatic background and engineering challenges, Polar
Res., 22, 191–215, https://doi.org/10.1111/j.1751-8369.2003.tb00107.x, 2003.
Kotzé, C. and Meiklejohn, I.: Temporal variability of ground thermal
regimes on the northern buttress of the Vesleskarvet nunatak, western
Dronning Maud Land, Antarctica, Antarct. Sci., 29, 73–81,
https://doi.org/10.1017/S095410201600047X, 2017.
Lacelle, D., Lapalme, C., Davila, A. F., Pollard, W., Marinova, M.,
Heldmann, J., and McKay, C. P.: Solar Radiation and Air and Ground
Temperature Relations in the Cold and Hyper-Arid Quartermain Mountains,
McMurdo Dry Valleys of Antarctica, Permafrost Periglac.,
27, 163–176, https://doi.org/10.1002/ppp.1859, 2016.
Levy, J.: How big are the McMurdo Dry Valleys? Estimating ice-free area
using Landsat image data, Antarctic Science, 25, 119–120,
https://doi.org/10.1017/S0954102012000727, 2013.
Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional
and Global Models, J. Climate, 17, 1381–1397,
https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2,
2004.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019a.
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground
Temperature Map, 2000–2016, Andes, New Zealand and East African Plateau
Permafrost, University of Oslo, https://doi.org/10.1594/PANGAEA.905512,
2019b.
Obu, J., Westermann, S., Kääb, A. and Bartsch, A.: Ground Temperature Map, 2000–2017, Antarctic, University of Oslo, PANGAEA, https://doi.org/10.1594/PANGAEA.902576, 2019c.
Oliva, M., Hrbacek, F., Ruiz-Fernández, J., de Pablo, M. Á., Vieira,
G., Ramos, M., and Antoniades, D.: Active layer dynamics in three
topographically distinct lake catchments in Byers Peninsula (Livingston
Island, Antarctica), CATENA, 149, 548–559,
https://doi.org/10.1016/j.catena.2016.07.011, 2017.
Østby, T. I., Schuler, T. V., and Westermann, S.: Severe cloud
contamination of MODIS Land Surface Temperatures over an Arctic ice cap,
Svalbard, Remote Sensing of Environment, 142, 95–102,
https://doi.org/10.1016/j.rse.2013.11.005, 2014.
Raffi, R. and Stenni, B.: Isotopic composition and thermal regime of ice
wedges in northern Victoria Land, East Antarctica, Permafrost Periglac., 22, 65–83, https://doi.org/10.1002/ppp.701, 2011.
Ramos, M., Vieira, G., de Pablo, M. A., Molina, A., Abramov, A., and Goyanes,
G.: Recent shallowing of the thaw depth at Crater Lake, Deception Island,
Antarctica (2006–2014), CATENA, 149, 519–528,
https://doi.org/10.1016/j.catena.2016.07.019, 2017.
Rocha, M. J., Dutra, E., Tomé, R., Vieira, G., Miranda, P., Fragoso, M.,
and Ramos, M.: ERA-Interim forced H-TESSEL scheme for modeling ground
temperatures for Livingston Island (South Shetlands, Antarctic Peninsula),
in: Proceedings of II Iberian Conference of the International Permafrost
Association: Periglacial, Environments, Permafrost and Climate Variability:
Colección Obras colectivas, Universidad de Alcalá, Siguenza, Spain, 21–23 June 2009, 2010.
Romanovsky, V. E. and Osterkamp, T. E.: Interannual variations of the
thermal regime of the active layer and near-surface permafrost in northern
Alaska, Permafrost Periglac., 6, 313–335,
https://doi.org/10.1002/ppp.3430060404, 1995.
Roth, G., Matsuoka, K., Skoglund, A., Melvær, Y., and Tronstad, S.:
Quantarctica: A Unique, Open, Standalone GIS Package for Antarctic Research
and Education, in: EGU General Assembly Conference Abstracts, 23–28 April 2017, Vienna, Austria, vol. 19, p. 1973, 2017.
Schaefer, C. E. G. R., Pereira, T. T. C., Almeida, I. C. C., Michel, R. F.
M., Corrêa, G. R., Figueiredo, L. P. S., and Ker, J. C.: Penguin activity
modify the thermal regime of active layer in Antarctica: A case study from
Hope Bay, CATENA, 149, 582–591, https://doi.org/10.1016/j.catena.2016.07.021, 2017a.
Schaefer, C. E. G. R., Michel, R. F. M., Delpupo, C., Senra, E. O., Bremer,
U. F., and Bockheim, J. G.: Active layer thermal monitoring of a Dry Valley
of the Ellsworth Mountains, Continental Antarctica, CATENA, 149, 603–615,
https://doi.org/10.1016/j.catena.2016.07.020, 2017b.
Seybold, C. A., Balks, M. R., and Harms, D. S.: Characterization of active layer water contents in the McMurdo Sound region, Antarctica, Antarct. Sci., 22, 633–645, https://doi.org/10.1017/S0954102010000696, 2010.
Shiklomanov, N. I.: From Exploration to Systematic Investigation:
Development of Geocryology in 19th- and Early–20th-Century Russia,
Phys. Geogr., 26, 249–263, https://doi.org/10.2747/0272-3646.26.4.249, 2005.
Smith, M. W. and Riseborough, D. W.: Permafrost monitoring and detection of
climate change, Permafrost Periglac., 7, 301–309,
https://doi.org/10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2-R, 1996.
Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: a
zonal analysis, Permafrost Periglac., 13, 1–15,
https://doi.org/10.1002/ppp.410, 2002.
Soliman, A., Duguay, C., Saunders, W., and Hachem, S.: Pan-Arctic Land
Surface Temperature from MODIS and AATSR: Product Development and
Intercomparison, Remote Sens., 4, 3833–3856, https://doi.org/10.3390/rs4123833,
2012.
Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A. A.,
Boelhouwers, J., Cannone, N., Ganzert, L., Gilichinsky, D. A., Goryachkin,
S., López-Martínez, J., Meiklejohn, I., Raffi, R., Ramos, M.,
Schaefer, C., Serrano, E., Simas, F., Sletten, R., and Wagner, D.: Thermal
state of permafrost and active-layer monitoring in the antarctic: Advances
during the international polar year 2007–2009, Permafrost Periglac., 21, 182–197, https://doi.org/10.1002/ppp.685, 2010.
Wan, Z.: New refinements and validation of the collection-6 MODIS
land-surface temperature/emissivity product, Remote Sens. Environ.,
140, 36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Westermann, S., Langer, M., and Boike, J.: Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway, Remote Sens. Environ., 118, 162–167, https://doi.org/10.1016/j.rse.2011.10.025, 2012.
Westermann, S., Østby, T. I., Gisnås, K., Schuler, T. V., and Etzelmüller, B.: A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data, The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015, 2015.
Zhang, Y., Olthof, I., Fraser, R., and Wolfe, S. A.: A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections, The Cryosphere, 8, 2177–2194, https://doi.org/10.5194/tc-8-2177-2014, 2014.
Short summary
Little is known about permafrost in the Antarctic outside of the few research stations. We used a simple equilibrium permafrost model to estimate permafrost temperatures in the whole Antarctic. The lowest permafrost temperature on Earth is −36 °C in the Queen Elizabeth Range in the Transantarctic Mountains. Temperatures are commonly between −23 and −18 °C in mountainous areas rising above the Antarctic Ice Sheet, between −14 and −8 °C in coastal areas, and up to 0 °C on the Antarctic Peninsula.
Little is known about permafrost in the Antarctic outside of the few research stations. We used...