Articles | Volume 14, issue 1
https://doi.org/10.5194/tc-14-367-2020
https://doi.org/10.5194/tc-14-367-2020
Research article
 | 
30 Jan 2020
Research article |  | 30 Jan 2020

Identification of blowing snow particles in images from a Multi-Angle Snowflake Camera

Mathieu Schaer, Christophe Praz, and Alexis Berne

Related authors

Flash-flood Alert System using Ensemble Radar Prediction and Rainfall-runoff Simulation
Frédéric G. Jordan, Clément Cosson, Marco Gabella, Ioannis V. Sideris, Adrien Liernur, Alexis Berne, and Urs Germann
Abstr. Int. Cartogr. Assoc., 9, 19, https://doi.org/10.5194/ica-abs-9-19-2025,https://doi.org/10.5194/ica-abs-9-19-2025, 2025
Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024,https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024,https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Real-time pollen identification using holographic imaging and fluorescence measurements
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024,https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
Multiscale modeling of heat and mass transfer in dry snow: influence of the condensation coefficient and comparison with experiments
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 18, 4285–4313, https://doi.org/10.5194/tc-18-4285-2024,https://doi.org/10.5194/tc-18-4285-2024, 2024
Short summary
Separating the albedo reducing effect of different light absorbing particles on snow using deep learning
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2583,https://doi.org/10.5194/egusphere-2024-2583, 2024
Short summary
Wind tunnel experiments to quantify the effect of aeolian snow transport on the surface snow microstructure
Benjamin Walter, Hagen Weigel, Sonja Wahl, and Henning Löwe
The Cryosphere, 18, 3633–3652, https://doi.org/10.5194/tc-18-3633-2024,https://doi.org/10.5194/tc-18-3633-2024, 2024
Short summary
Spatial variation in the specific surface area of surface snow measured along the traverse route from the coast to Dome Fuji, Antarctica, during austral summer
Ryo Inoue, Teruo Aoki, Shuji Fujita, Shun Tsutaki, Hideaki Motoyama, Fumio Nakazawa, and Kenji Kawamura
The Cryosphere, 18, 3513–3531, https://doi.org/10.5194/tc-18-3513-2024,https://doi.org/10.5194/tc-18-3513-2024, 2024
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024,https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary

Cited articles

Bellot, H., Trouvilliez, A., Naaim-Bouvet, F., Genthon, C., and Gallée, H.: Present weather-sensor tests for measuring drifting snow, Ann. Glaciol., 52, 176–184, 2011. a
Bintanja, R.: Snowdrift sublimation in a katabatic wind region of the Antarctic ice sheet, J. Appl. Meteorol., 40, 1952–1966, https://doi.org/10.1175/1520-0450(2001)040<1952:SSIAKW>2.0.CO;2, 2001. a
Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L.-S., Stroeve, J. C., Rogers, J. C., Steffen, K., Haran, T., and Wang, S.-H.: Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output, J. Climate, 19, 2783–2800, 2006. a
Budd, W., Dingle, W., and Radok, U.: The Byrd snow drift project: outline and basic results, in: Studies in Antarctic Meteorology, edited by: Rubin, M. J., vol. 9 of Antarctic Research Series, American Geophysical Union, 71–134, 1966. a
Budd, W. F.: The drifting of non-uniform snow particles, in: Studies in Antarctic Meteorology, edited by: Rubin, M. J., vol. 9 of Antarctic Research Series, American Geophysical Union, 59–70, 1966. a
Download
Short summary
Wind and precipitation often occur together, making the distinction between particles coming from the atmosphere and those blown by the wind difficult. This is however a crucial task to accurately close the surface mass balance. We propose an algorithm based on Gaussian mixture models to separate blowing snow and precipitation in images collected by a Multi-Angle Snowflake Camera (MASC). The algorithm is trained and (positively) evaluated using data collected in the Swiss Alps and in Antarctica.
Share