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Abstract. A new method to automatically discriminate be-
tween hydrometeors and blowing snow particles on Multi-
Angle Snowflake Camera (MASC) images is introduced. The
method uses four selected descriptors related to the image
frequency, the number of particles detected per image, and
their size and geometry to classify each individual image.
The classification task is achieved with a two-component
Gaussian mixture model fitted on a subset of representa-
tive images of each class from field campaigns in Antarc-
tica and Davos, Switzerland. The performance is evaluated
by labeling the subset of images on which the model was fit-
ted. An overall accuracy and a Cohen kappa score of 99.4 %
and 98.8 %, respectively, are achieved. In a second step,
the probabilistic information is used to flag images com-
posed of a mix of blowing snow particles and hydrometeors,
which turns out to occur frequently. The percentage of im-
ages belonging to each class from an entire austral summer
in Antarctica and during a winter in Davos, respectively, is
presented. The capability to distinguish precipitation, blow-
ing snow and a mix of those in MASC images is highly rel-
evant to disentangle the complex interactions between wind,
snowflakes and snowpack close to the surface.

1 Introduction

Over snow-covered regions, ice particles can be lifted from
the surface by the wind and suspended in the atmosphere.
Wind-driven snow transport is ubiquitous in the cryosphere:
over complex terrain (e.g., Winstral et al., 2002; Mott and
Lehning, 2010), over tundra/prairies (e.g., Pomeroy and Li,
2000) and over polar ice sheets (e.g., Bintanja, 2001; Déry
and Yau, 2002; Palm et al., 2011). Wind-driven snow trans-

port must be taken into account to obtain accurate estimates
of the mass balance and radiative forcings at the surface (e.g.,
Gallée et al., 2001; Lesins et al., 2009; Scarchilli et al., 2010;
Yang et al., 2014). In mountainous regions, wind-transported
snow also creates local accumulations and irregular deposits,
being a critical factor influencing avalanche formation (e.g.,
Schweizer et al., 2003). Quantifying snow transport during
snowfall events and subsequent periods of strong winds is
essential for local avalanche prediction (e.g., Lehning and
Fierz, 2008). In the context of climate change, the mass bal-
ance of the Antarctic ice sheet is of increasing relevance due
to its impact on sea level rise (Shepherd et al., 2012). The sus-
tained katabatic winds in Antarctica generate frequent blow-
ing snow events, which remove a significant amount of new
snow through transport and sublimation. Wind-transported
snow is hence an important factor to take into account when
considering Antarctic mass balance (e.g., Déry and Yau,
2002; Scarchilli et al., 2010; Lenaerts and van den Broeke,
2012; Das et al., 2013). Blowing snow is also an important
process for the mass balance of the Greenland ice sheet (e.g.,
Box et al., 2006).

Ice particles moving at the snow surface belong to one of
the three main types of associated motion: creep, saltation
and suspension (e.g., Kind, 1990). Given the fact that the ob-
servations used in the present study were collected about 3 m
above the ground (or snow surface) level, the term “blowing
snow” hereinafter refers to wind-suspended ice particles.

Blowing snow is challenging to measure and characterize.
Various approaches have been proposed to monitor blowing
snow at ground level: mechanical traps, nets, photoelectric or
acoustic sensors, and photographic systems (Leonard et al.,
2012; Kinar and Pomeroy, 2015). Although not specifically
designed for blowing snow, present weather sensors have
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been shown to be valuable to monitor drifting and blowing
snow fluxes (e.g., Bellot et al., 2011). Remote sensing and
lidar systems in particular have recently been used to charac-
terize the occurrence and depth of blowing snow layers, ei-
ther from space (Palm et al., 2011) or near ground level (Gos-
sart et al., 2017). Suspended ice particles are under the influ-
ence of the gravitational force proportional to the size cubed
while the drag force is proportional to the area (size squared).
With a greater area-to-mass ratio, smaller particles are thus
more likely to be lifted in the suspension layer. A compari-
son of 10 different studies of measured and simulated particle
size distributions of blowing snow reveals mean diameters at
heights above 0.2 m ranging from 50 to 160 µm (Gordon and
Taylor, 2009).

Blowing snow may also contaminate precipitation ob-
servations collected by ground-based sensors, frequently
in Antarctica (e.g., Nishimura and Nemoto, 2005; Gossart
et al., 2017), where winds are strong and frequent, but
also in snowy regions in general (Rasmussen et al., 2012;
Naaim-Bouvet et al., 2014; Scaff et al., 2015). The is-
sue of snowfall measurement is complex, and the WMO
promoted intercomparison projects to evaluate various sen-
sors and define standard setups and protocols over the last
two decades, as illustrated in Goodison et al. (1998) and
the recent SPICE project (http://www.wmo.int/pages/prog/
www/IMOP/intercomparisons/SPICE/SPICE.html, last ac-
cess: 28 January 2020).

The Multi-Angle Snowflake Camera (MASC) is a ground-
based instrument designed to automatically capture high-
resolution (∼ 33.5 µm) photographs of falling hydrometeors
from three different angles (Garrett et al., 2012). The MASC
has been used in previous studies to investigate snowflake
properties (Garrett et al., 2015; Grazioli et al., 2017) and to
help interpret weather radar measurements (Kennedy et al.,
2018). Interestingly, blowing snow particles also trigger the
MASC motion detector system (see Sect. 2.1), producing
many images in windy environments. In addition to hydrom-
eteor classification techniques based on MASC images (e.g.,
Praz et al., 2017), the ability to discriminate between im-
ages composed of blowing snow and precipitation particles
would therefore be relevant to characterize blowing snow, to
provide reference observations to improve its remote sensing
and to obtain more accurate snowfall estimates from ground-
based sensors. More generally, detailed information about
the type of particles extracted from pictures collected by a
MASC will enable us to further investigate the complex in-
teractions between wind, snowflakes and snowpack close to
the surface in cold and windy regions.

This article presents a new method to automatically de-
termine if an image from the MASC (and potentially other
imaging instruments) is composed of blowing snow particles,
precipitating hydrometeors (snowflakes and ice crystals) or a
mix of both. The classification is accomplished by means of
a Gaussian mixture model (GMM) with two components, fit-
ted on a set of representative MASC images and evaluated

on a manually built validation set. The paper is organized as
follows: Sect. 2 introduces the data sets used to develop the
method and fit the GMM. Section 3 illustrates the different
steps to isolate the particles and extract related features for
the clustering task. Section 4 explains the selection of the
most relevant features, the fitting of the GMM and the attri-
bution of a flag for mixed images. The main results are shown
in Sect. 5. At last, limitations and further improvements are
discussed in Sect. 6.

2 Instrument and data sets

2.1 The Multi-Angle Snowflake Camera

The MASC is a ground-based instrument which automat-
ically takes high-resolution and stereoscopic photographs
of hydrometeors in free fall while measuring their fall ve-
locity. Its working mechanism is only summarized here-
after, as more details and explanations can be found in Gar-
rett et al. (2012), who provide an extensive description of
the instrument. Three high-resolution cameras (2448 pix-
els× 2048 pixels), separated by an angle of 36◦, are attached
to a ring structure and form altogether the imaging unit (see
Fig. 1). The focal point is located inside the ring at about
10 cm from each camera (with a focal length of 12.5 mm).
Particles falling through the ring and detected by the two hor-
izontally aligned near-infrared emitter–receiver arrays trig-
ger the three flashes and the three cameras. The cameras’
apertures and exposure times were adjusted in order to max-
imize the contrast on hydrometeor photographs while pre-
venting motion blur effects, leading to a resolution of about
33.5 µm and a sampling area of about 8.3 cm2 (see Praz et al.,
2017). The maximum frequency of triggering is 3 Hz, which
is three image triplets per second (see Fig. 6).

These specifications can be compared to the snow particle
counter (SPC) which has been used in many studies of blow-
ing snow (e.g., Nishimura and Nemoto, 2005; Gordon and
Taylor, 2009; Kinar and Pomeroy, 2015; Guyomarc’h et al.,
2019) and can be considered as the reference instrument for
monitoring blowing snow (e.g., Crivelli et al., 2016). The
SPC has a control volume of 2mm× 25mm× 0.5mm and
assigns particles into 32 diameter classes between 50 and
500 µm. It provides information on particle diameter (assum-
ing a spherical shape), particle number and particle mass flux
usually at a 1 s resolution (but raw data are measured at up
to 150 kHz, Nishimura et al., 2014). For more information
about the SPC, the reader is referred to the articles mentioned
above.

2.2 Data sets

The MASC data used to implement and validate the present
algorithm were collected during three field campaigns. The
first one took place in Davos, Switzerland, from Octo-
ber 2015 to June 2016. The MASC was placed at 2540 m a.s.l
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Figure 1. (a) Side view of the MASC with the three flash lamps in white on top and the two detectors as white boxes on the side of the metal
ring (in black and red in front). (b) Top view of the inside of the MASC, with the three cameras clearly visible.

in a double-fence intercomparison reference (DFIR; see
Fig. 2a), designed to limit the adverse effect of wind on the
measuring instruments in its center (Goodison et al., 1998).
The MASC was about 3 m above ground. The two other cam-
paigns took place at the French Antarctic Dumont d’Urville
(DDU) station, on the coast of Adélie Land, from Novem-
ber 2015 to February 2015 and from January to July 2017, in
the framework of the Antarctic Precipitation, Remote Sens-
ing from Surface and Space project (http://apres3.osug.fr,
last access: 28 January 2020) (Grazioli et al., 2017; Genthon
et al., 2018). The instrument was deployed on a rooftop at
about 3 m above ground (see Fig. 2b). A collocated weather
station and a micro rain radar (MRR) were also installed.
Nearly 3 million images were collected during these mea-
surement campaigns altogether.

From this large number of data, subsets of pure precip-
itation and pure blowing snow images were manually se-
lected and further analyzed to choose relevant descriptors
and fit a two-component GMM. The task of selecting a suffi-
cient number of representative images for both classes turned
out to be more complicated than expected, in particular for
the Antarctic data set in which mixed images are very fre-
quent. Gossart et al. (2017) used ceilometer data collected at
the Neumayer (coastal) and Princess Elizabeth (inland) sta-
tions in East Antarctica to investigate blowing snow, and they
suggest that more than 90 % of blowing snow occurs dur-
ing synoptic events, usually combined with precipitation. For
the sake of generalization, a large number of representative
events were selected across the three campaigns. The goal
was to cover a wide range of hydrometeors types and a wide
range of snowfall intensities for the precipitation subset. Sim-
ilarly, a wide range of wind speeds and concentrations were
considered to build the blowing snow subset. From the cam-
paigns in Antarctica, pure blowing snow and hydrometeor
events were highlighted by comparing time series of MASC
image frequency, wind speed and MRR-derived rain rate, as
illustrated in Fig. 3. It was noticed that during strong blowing

snow events, the number of images captured by the MASC
was much larger than during precipitation events (more than
one image per second; see Fig. 6). Potential pure blowing
snow events were selected when the MASC image frequency
and wind speed were higher than their respective median es-
timated over the whole campaign (to select relatively high
values), and no precipitation was detected during the preced-
ing hour. Only events for which these criteria applied for over
an hour consecutively were kept. To highlight pure precipi-
tation, the principle was the same but the criteria were an
image frequency and a wind speed lower than the median as
well as a MRR precipitation rate greater than zero. The MRR
has a certain detection limit, so it was noticed that events se-
lected as blowing snow could also occur during undetected
light precipitation. As a result, images from all events were
rapidly checked visually, and the campaign logbook was con-
sulted to ensure that the selection was consistent and coher-
ent. In both cases, some events had to be removed because of
obvious mixing of blowing snow and hydrometeors.

As the MASC was deployed inside a DFIR in Davos, no
blowing snow events were selected from this campaign. Al-
though the DFIR is supposed to shelter the inner instruments
from wind disturbances, we noticed that many images do not
solely contain pure hydrometeors. From a webcam monitor-
ing the instrumental setup, we noticed that the fresh snow ac-
cumulated on the edges and borders of the wooden structure
of the DFIR was frequently blown away towards the sensor.
To enlarge the precipitation subset, events with high snowfall
rate but not affected by outliers of fresh wind-blown snow
were added. Finally, some sparse images of obvious pure hy-
drometeors in the middle of mixed events were also included
in the training set. In total, each subset contained 4263 im-
ages and, despite possible remaining (limited) uncertainty in
the exact type of images, is assumed to be accurate and re-
liable enough to serve as reference for the evaluation of the
proposed technique (see Fig. 8 and Sect. 4.2).
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Figure 2. Experimental setup conditions of the MASC in a DFIR near Davos (a) and on top of a container at Dumont d’Urville (b).

Figure 3. Time series and scatter plots of MASC image frequency, wind speed (measured at 10 m) and MRR-derived rain rate for the
Antarctica 2015–2016 campaign. The gray shading indicates days during which time steps have been selected for the training set as blowing
snow (dark gray) or precipitation (light gray). In the bottom scatter plots, the markers figure the selected blowing snow and precipitation time
steps. Points on the x axis in the left scatter plot are potential candidates for pure blowing snow.

3 Image processing

3.1 Particle detection

The MASC instrument and the collected images are de-
scribed in Sect. 2.1. Although a single particle activates the

cameras, many MASC pictures contain multiple particles
distributed over the entire image, especially when blowing
snow occurs. In fact, the number of particles appearing on
a single image is a key characteristic to distinguish between
precipitation and blowing snow. As a result, it was deemed
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Table 1. Campaigns and dates of selected events for the blowing
snow (BS) and precipitation (P) subsets.

Antarctica 2015–2016 Antarctica 2017 Davos 2015–2016

11 Nov BS 8 Feb BS 23 Feb P
22 Nov P 9 Feb BS 25 Feb P
15 Dec P 18 Feb BS 4 Mar P
16 Dec P 19 Feb BS 5 Mar P
30 Dec P 16 Mar P
2 Jan P 25 Mar P
11 Jan P
28 Jan BS

essential to detect all particles in each image rather than the
triggering one only (which is sometimes unidentifiable). A
key challenge of this approach was to get rid of the noisy
background. For this purpose, a median filter was used. The
brightness of the background strongly depends on the lumi-
nosity at the instant of the picture, which varies according to
the time of day and can change abruptly in partly cloudy con-
ditions when the sun suddenly appears from behind a cloud.
As a result, the median filter shows better performance to re-
move the background when systematically recomputed over
a small number of consecutive images. Assuming that snow
particles rarely appear at the exact same position in several
consecutive images, the median filter was chosen to be com-
puted over blocks of five images per camera angle. To en-
sure complete removal of the background when its bright-
ness is greater that the corresponding median, a factor of
1.1 was applied to the filter. Finally, as some limited residual
noise can still remain in the filtered image, a small detection
threshold of 0.02 grayscale intensity was applied to isolate
the snow particles. Masks of the sky and reflecting parts of
the background (i.e., metallic plates) were created for each
camera. The multiplication factor and detection threshold are
increased in the regions delineated by the masks if the normal
filtering leads locally to more pixels detected that one can ex-
pect from real particles. These steps are illustrated in Figs. 4
and 5. Issues in the filtering may occur if consecutive images
are separated by a period of time during which the ambient
luminosity has changed significantly (e.g., before/after the
sunrise or sunset). An example is shown in Fig. B1 in Ap-
pendix B.

3.2 Feature extraction

Machine-learning algorithms require a set of variables, com-
monly called features or descriptors, upon which the clas-
sification is performed. Because of the fragmentation of ice
crystals when hitting the snow surface (e.g., Schmidt, 1980;
Comola et al., 2017), blowing snow is expected to be charac-
terized by much smaller particle size and much higher par-
ticle concentration than snowfall (e.g., Budd, 1966; Budd
et al., 1966; Nishimura and Nemoto, 2005; Naaim-Bouvet

Figure 4. Raw image, median filter, filtered image and final binary
image for an example of blowing snow particles. The image size
is 2448 pixels× 2048 pixels, corresponding to 82mm× 68.6mm.
Original MASC images are in gray shades, but the color scheme
used here aims to enhance contrast and details for visual purposes.

Figure 5. Raw image, median filter, filtered image and final binary
image for an example of a hydrometeor. The color scheme is used
to enhance details for visual purposes.

et al., 2014). In this study, various quantitative descriptors
were therefore calculated according to four different cate-
gories: the number of particles and their spread across the
image, the size of the particles, the geometry of the particles,
and the frequency at which the images are taken.
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Since it is difficult to exactly guess which descriptors are
the most adequate to differentiate between blowing snow
and precipitation images, an extensive collection of fea-
tures was extracted from the blowing snow and precipita-
tion subsets and compared. The selection of the most rel-
evant ones is explained in the next section. As the classi-
fication is performed at the image level, we need features
at the same level, and the information on the geometry and
size of each detected particle in the considered image must
hence be transformed into a single descriptor for that im-
age. Consequently, quantiles ranging from 0 to 1 and mo-
ments from 1 to 10 were computed out of the distribution
of the considered feature within the image. The image fre-
quency is a descriptor independent of the content of the
image and thus from the detection of particles. It is there-
fore not affected by potential image-processing issues. As
each image comes with its attributed timestamp, the average
number of images per minute was calculated with a mov-
ing window. The full list of all computed descriptors is dis-
played in Appendix A. The extraction of features was con-
ducted with the MATLAB Image Processing Toolbox, in par-
ticular the function regionprops (https://ch.mathworks.
com/help/images/ref/regionprops.html, last access: 28 Jan-
uary 2020).

4 Classification

4.1 Feature selection and transformation

Selecting a relevant set of features and avoiding redundancy
is essential for accurate classification, regardless of the clas-
sification algorithm. For each of the four categories of de-
scriptors previously mentioned, the most relevant one (ac-
cording to the criterion explained below) was kept. The de-
scriptor maximizing the interclusters-over-intraclusters dis-
tance described in Eq. (1) was selected. This quantity repre-
sents the distance between the mean of the blowing snow and
precipitation distributions (µBS and µP respectively), nor-
malized by the sum of their respective standard deviations
(σBS and σP respectively).

S =
|µBS−µP|
1
2 (σBS+ σP)

. (1)

For the features describing the number of detected par-
ticles and their spread across the image, the cumula-
tive distance transform was kept. It represents the sum
over each entry of the distance transform matrix (https://
ch.mathworks.com/help/images/ref/bwdist.html, last access:
28 January 2020) of the binary image. The distance trans-
form matrix has the same dimensions as the binary image and
computes, for each pixel, the Euclidean distance to the near-
est 1 element (i.e., the nearest particle). As a result, an image
with many particles well distributed over its entire surface
will have a low cumulative distance transform, while a sin-

Table 2. Selected features and corresponding S values.

Feature name S

Image frequency 4.43
Cumulative distance transform 2.89
Maximum diameter quantile 0.7 1.71
Squared fractal index quantile 0 3.81

gle particle, even particularly large, will have a high value.
This descriptor is more robust to image-processing issues
than the raw number of particles, as illustrated in Fig. B2
in Appendix B.

Concerning the size distribution of the particles detected in
an image, the quantile 0.7 of the maximum diameter was se-
lected (because it has the highest S value among the different
quantiles tested). The maximum diameter (Dmax) represents
the longest segment between two edges of a particle (see Praz
et al., 2017, for more details). A logarithmic transformation
of this feature was performed to make the distributions of
the two classes more Gaussian. The minimum (i.e., quantile
0) squared fractal index showed the greatest S value (hence
discrimination potential) among the features related to the
particle geometry indices. The fractal index (FRAC) is de-
fined according to the formula proposed by McGarigal and
Marks (1995) in the context of landscape-pattern analysis. It
was also more recently used to quantify stand structural com-
plexity from terrestrial laser scans of forests (Ehbrecht et al.,
2017).

Due to its different nature, the image frequency descrip-
tor was selected by default, but it is worth noting that it
has the highest S value (Eq. 1) among all descriptors (Ta-
ble 2). The marginal distributions of the selected descriptors
for the training set are shown in Fig. 6 to provide an idea
of their respective magnitude and variability, as well as to
illustrate their discrimination potential. As noted above, the
image frequency is the most informative descriptor to distin-
guish blowing snow and precipitation.

In summary, four descriptor categories (related to parti-
cle size, particle geometry and particle distribution within
the image, and image frequency) have been defined to dis-
tinguish images collected during blowing snow or snowfall,
based on the expected differences in particle size and con-
centration between the two. A number of descriptors were
estimated from each image by computing various quantiles
and moments of the distributions of geometric properties of
the particles in the considered image. One descriptor from
each of the four categories defined above (listed in Table 2)
was then selected to be further used for classification as the
one maximizing the interclusters-over-intraclusters distance
defined in Eq. (1).
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Figure 6. Histograms of selected descriptors for the training blowing snow and precipitation subsets.

4.2 Model fitting

The choice for the binary classification task was made on
a Gaussian mixture model, an unsupervised learning tech-
nique that fits a mixture of multivariate Gaussian distribu-
tions to the data (see Murphy, 2012; McLachlan and Basford,
1988; Moerland, 2000, for more details). The mathematical
description of a multivariate normal distribution is provided
in Eq. (2).

N (x|µ,6)=
1

(2π)D/2|6|1/2

exp{−
1
2
(x−µ)T6−1(x−µ)}, (2)

where x is a Gaussian multivariate random variable of di-
mension D, µ its mean and 6 its covariance matrix, with T

the transpose operator.
The choice of an unsupervised approach is based on sev-

eral reasons. First, unsupervised methods do not depend upon
labels. Hence, it is not required to ensure correct labeling of
each image in the training set. As mentioned earlier, many
images are composed of a mix of blowing snow and precip-
itation, and it is thus difficult to guarantee the objectivity of
all given labels. Second, a clear separation observed between
the two subsets would be statistically highly significant as
no prior information is provided to the learning algorithm
about the classes. Third, for low-dimension problems, unsu-
pervised methods are sometimes less prone to overfitting and
have a better potential for generalization. A main advantage
of the GMM compared to other unsupervised methods is to

provide posterior probabilities on the cluster assignments and
thus allow for soft clustering (i.e., probabilistic assignment).
In the context of the present study, this is absolutely rele-
vant as there exists a whole continuum of in-between cases
of mixed images. It should be noted that the descriptors were
selected using a reference set (see previous section), but the
clustering conducted by means of the GMM is itself unsu-
pervised.

A two-component GMM with unshared full covari-
ance matrices was thus fitted to the four-dimensional
(x = {f1,f2,f3,f4}, where fi represents the four features
listed in Table 2) data composed of the blowing snow and
precipitation subsets. The MATLAB Statistics and Machine
Learning Toolbox was used for this purpose, and the model
parameters were estimated by maximum likelihood via
the expectation–maximization (EM) algorithm (https://ch.
mathworks.com/help/stats/gaussian-mixture-models-2.html,
last access: 28 January 2020). The features were stan-
dardized before fitting the model. The mixing weights
(or component proportions) were artificially set to 0.5 by
randomly removing 80 data points from the training set and
fitting again the GMM to have perfectly balanced classes.
This step is essential as the model will then be used to
classify new images (possibly from other campaigns). There
are no reasons to give more weight to one component, as the
relative proportion of blowing snow and precipitation images
strongly depends on the campaign location. The posterior
probabilities are computed using the Bayes rule (Murphy,
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2012):

P(zi = k|xi,θ)=
P(xi |zi = k,θ)P (zi = k|θ)

P (xi |θ)
, (3)

where zi is a discrete latent variable taking the values
1, . . .,K and labeling the K Gaussian components. P(zi =
k|xi,θ) is the posterior probability that point i belongs to
cluster k (also known as the “responsibility” of cluster k for
point i). P(xi |zi = k,θ) corresponds to the density of com-
ponent k at point i (i.e., N (xi |µk,6k)), and P(zi = k|θ)
represents the mixing weight (also denoted πk). Note that
the πk’s are positive and sum to 1. θ refers to the fitted
parameters of the mixture model {µ1, . . .,µk , 61, . . .,6K ,
π1, . . .,πK}. P(xi |θ) is the marginal probability at point i,
which is simply the weighted sum of all component densi-
ties:

P(xi |θ)=

K∑
k=1

πkN (xi |µk,6k). (4)

As the concern of this study is on two components only,
a more compact notation will be used for the rest of the ar-
ticle. The latent variable z will be replaced by kP and kBS
to refer to the precipitation and blowing snow clusters, re-
spectively. The term θ , which denotes the model parame-
ters, will be left implicit. Assuming we are at first interested
in performing some hard clustering (i.e., single label to a
given image), an image will be classified as blowing snow if
P(kBS|xi) > P (kP|xi). That is to say, if the posterior proba-
bility of belonging to the blowing snow cluster is greater than
0.5, an image will be classified as such (because the posterior
probabilities sum to 1). The model performance was assessed
by simply labeling the data points according to its initial sub-
set. An overall accuracy of 99.4 % and a Cohen kappa score
of 98.8 % were achieved. The Cohen kappa statistic adjusts
the accuracy by accounting for correct predictions occurring
by chance (Byrt et al., 1993). These high values indicate a
very good performance of the fitted GMM. Figure 7 presents
the fitted Gaussian components as well as the reference val-
ues (not used in the fitting) for each of the six possible pairs
of the four descriptors. It clearly illustrates the performance
of the fitted GMM and the discriminative power of the de-
scriptor related to image frequency.

To investigate the stability of the Gaussian components,
the precipitation and blowing snow subsets were both ran-
domly permuted and divided into 10 equal parts. Ten new
training sets of a balanced amount of each subset were cre-
ated, and a new GMM was fitted. Figure 8 shows on the
top line the boxplots of the Gaussian component parame-
ters µd and σ d (i.e., diagonal entries of 6) for each of the
four dimensions. The boxplots show a limited variability for
each feature (below 10 %), indicating a reasonable stability
of the fitted parameters. In addition, the bottom line of Fig. 8
presents the learning curves, and their fast convergence to the
same horizontal line when more than 30 % of the training set

is used indicates a data set large enough for a reliable fitting
of the GMM, without overfitting.

4.3 Flag for mixed images

As mentioned earlier, an asset of using a GMM model is
the posterior probabilistic information that could help esti-
mate the degree of mixing of an image. Data points located
close to the decision boundary in the multidimensional space
are likely to be composed of a mix of blowing snow parti-
cles and hydrometeors. However, distributions of posterior
probabilities computed over thousands of new images from
entire campaigns appeared to be stretched out on both ends
of the domain (i.e., close to 0 or 1), and not many images
were present in between. This is probably due to the nature
of the descriptors and the resulting shapes and relative po-
sitions of the Gaussian distributions. In order to investigate
this issue, an additional set of images corresponding to mixed
cases was built: it exhibited clear differences in the posterior
probabilities with the pure blowing snow and pure precipita-
tion subsets. This differentiation was however around 10−6

(or 1− 10−6), which is not so informative as such. Conse-
quently, it was decided to define a new index similar to the
posterior probability of belonging to the blowing snow com-
ponent but more evenly distributed across the range ]0,1[.
The new index uses the negative logarithm of the posterior
probabilities multiplied by the marginal probability. Taking
the log of Eq. (3) for kBS, we have (the same applies for kP)

− log[P(kBS|xi)P (xi)] = − log[P(xi |kBS)P (kBS)]. (5)

Noting that the term P(xi |kBS) on the right-hand side is
N (xi |µBS,6BS), one can substitute Eq. (2) into the above
expression, which yields

− log[P(kBS|xi)] − log[P(xi)] =

1
2
(xi −µBS)

T6−1
BS(xi −µBS)+

1
2

log(|6BS|)

+
D

2
log(2π)− log(P (kBS)). (6)

The quadratic term on the right-hand side is the Maha-
lanobis distance, which is a distance that uses a 6−1 norm.
Hence, it represents the distance between point xi and the
center of the distribution, corrected for correlations and un-
equal variances in the feature space (De Maesschalck et al.,
2000). The second term is related to the determinant of the
covariance matrix and equals −3.94 for the blowing snow
component and −2.59 for the precipitation one. The two last
terms are constant and sum to 4.37 (the component propor-
tions were set to 0.5 and D = 4). The right side of Eq. (6)
is also known as the quadratic discriminant function (QDF,
Kimura et al., 1987), commonly noted gk(xi). The minus in
front of the logarithm on the left side of Eq. (6) is used to
return positive values and facilitate subsequent graphical in-
terpretations. Note that the constant term D

2 log(2π) is often
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Figure 7. GMM contours and data points projected on the 2-D planes. The colors correspond to the four entries of the confusion matrix. The
predictions result from the clustering and the ground truth is the given labels.

removed, but in this case it ensures that gk(x) is positive,
even for a Mahalanobis distance of zero. Figure 9 displays
a scatter plot of the quadratic discriminant values of both
components for the whole training set. The proposed index
is defined as the angle of the vector representing a data point
on the scatter plot, normalized by π

2 . It is thus computed as
follows:

ψ =
2
π

arctan
{
− log[P(kP|xi)P (xi)]

− log[P(kBS|xi)P (xi)]

}
. (7)

This normalized angle is bounded in ]0,1[, with values
close to 1 (respectively 0) indicating a strong membership
of the considered image (and not the respective proportions
within this image) to the blowing snow (respectively precip-
itation) clusters. It is closely related to the asymmetry of the
Mahalanobis distances between a point xi and the centers
of the two Gaussian distributions but corrected by the term
1
2 log(|6|), which is different for the two components. The
advantage of using the index in this form, rather than deriving
it from the Mahalanobis distances alone, is to respect the de-
cision boundary given by the maximum a posteriori (MAP)
rule. This means a posterior probability of 0.5 yields a ψ in-
dex of 0.5. Finally, quantiles 0.9 (ψP0.9) and 0.1 (ψBS0.1) of
the ψ index distributions of the points classified as precipi-
tation and blowing snow, respectively, are retained as thresh-
olds to flag potential mixed images. The idea is to allow, for
both classes, 10 % of the training set images to be flagged as
mixed. This value is qualitatively supported by the distribu-
tion shown in Fig. 9. It can be changed by the user to be more

(increasing it) or less (decreasing it) strict on the classifica-
tion as pure blowing snow or pure precipitation, depending
on the intended application.

To ease reading and interpretation, a mixing index λm is
introduced by linearly rescaling between 0 and 1 the ψ index
of the images flagged as mixed (i.e., λm is not defined for
pure precipitation or pure blowing snow images):

λm =
0.5

0.5−ψP0.9
(ψ −ψP0.9) if ψ ∈ (ψP0.9,0.5),

=
0.5

0.5−ψBS0.1
((1−ψBS0.1)−ψ) if ψ ∈ [0.5,ψBS0.1).

(8)

The mixing index also respects the hard clustering assign-
ment boundary at 0.5: λm > 0.5 indicates that the image con-
tains a mix of blowing snow and precipitation particles, but
it is closer overall to blowing snow and vice versa. Images
with a normalized angle outside the two mixed thresholds
have an undefined (NaN) index of mixing and are considered
as pure blowing snow particles or pure hydrometeors. Results
are provided treating all images independently, but the ψ in-
dex can also be averaged among the three camera angles to
provide a unique value per image identifier as well. The me-
dian of the range (max – min) covered by the ψ values from
the three individual views is about 0.08 in Davos and 0.05
at Dumont d’Urville, indicating a limited variability between
the three views.

In summary, the classification as a mixed case is based on
the angle characterizing the considered MASC image in the
2-D space formed by the axis related to pure blowing snow
on the one hand and the one related to pure precipitation on
the other hand. A mixing index λm is finally computed by lin-
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Figure 8. (a, b) Stability of the parameters µ and σ (diagonal entries of 6) for the two Gaussian components. The boxplots show the
distributions of these parameters for each dimension, after fitting the GMM on a 10-fold random split of the training set. The feature number
follows the order given in Table 2. (c) Learning curves for the fitted GMM, showing the evolution of the train and Cohen’s kappa test as
a function of the proportion of the training samples used. The shaded areas correspond to the 25–75th percentile range computed over 40
iterations of 70 %–30 % random train-test splitting, and the bold lines are the medians.

early rescaling the normalized angle over the range of values
corresponding to mixed cases.

5 Results

The method presented (and fitted) in the previous sec-
tions is now applied to the entire Antarctica 2017 cam-
paign (January–July 2017) and to the entire Davos cam-
paign (December 2015–March 2016). About 2× 106 images
for Antarctica and 8.5× 105 for Davos were classified. Ta-
ble 3 summarized the outcome in terms of respective pro-
portions of pure blowing snow, pure precipitation, mixed
blowing snow, and mixed precipitation for the Antarctic and
Alpine data sets. As expected, the occurrence of blowing
snow (pure + mixed) is much more frequent at Dumont
d’Urville (75.6 %) than at Davos (21.5 %, out of which only
0.6 % if of pure blowing snow).

Figure 10a shows the distribution of the collected MASC
images in the space formed by the two quadratic discriminant
(one for blowing snow, one for precipitation), and Fig. 10b
shows the distribution of the normalized angle for the entire
Antarctica 2017 campaign. A clear difference with Fig. 9 is
the large proportion of values corresponding to mixed cases:

Table 3. Percentages of MASC images per category.

Class Antarctica Davos
(Jan–Jul 2017) (Dec 2015–Mar 2016)

Pure blowing snow 36.5 % 0.6 %
Pure precipitation 7.2 % 39.2 %
Mixed blowing snow 39.1 % 20.9 %
Mixed precipitation 17.2 % 39.3 %

there are much more points around the one–one line (Fig. 9a)
and a small mode around 0.5 (Fig. 9b) for the entire cam-
paign than for the training set (built with much fewer mixed
cases). It is also clear from Fig. 10b that blowing snow and
mixed blowing snow are more frequent than precipitation and
mixed precipitation.

Figure 11 is similar to Fig. 10 but for the entire Davos
data set. In comparison with Fig. 10, the occurrence of pre-
cipitation is much larger (and blowing snow much smaller),
which is to be expected given the difference in geographic
context (Alps vs. Antarctica) and experimental setup (wind-
protected vs. no wind shield). It should be noted that mixed
cases are relatively frequent and that blowing snow still hap-
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Figure 9. (a) Scatter plot of the quadratic discriminant values of
both components for the training set. (b) Probability density func-
tions (PDF) of the normalized angle for the precipitation and blow-
ing snow subsets and thresholds to identify mixed images.

pens in Davos although the MASC was located in a wind
shielding fence.

Beyond global statistics on various data sets as presented
above, the proposed approach can also be used to investigate
the type of images at high temporal resolutions. Figure 12
shows an example of the output of the algorithm and corre-
sponding images for a few time steps during a mixed event.
It illustrates the capability of the proposed approach to dis-
tinguish blowing snow, precipitation and mixture in individ-
ual MASC images separated by a few seconds (and hence
the contribution of the features other than image frequency).
Over a longer time period, Fig. 13 displays the evolution of
the normalized angle for a mixed event during the Antarc-
tica 2017 campaign. From roughly 09:00 to 12:00, the types
precipitation and mixed are dominant, while between 12:00
and 14:00 the three types (precipitation, mixed and blow-
ing snow) occur simultaneously. This is to be expected at
DDU where katabatic winds blow very frequently, even dur-
ing precipitation (e.g., Vignon et al., 2019). From 14:00 to
22:00, blowing snow becomes dominant (because of stronger
winds). After 22:00, mixed cases dominate and some images
corresponding to precipitation are detected towards the end
of the event. The possibility of identifying MASC images
corresponding to precipitation, blowing snow or a mixture at

Figure 10. (a) Scatter plot of the quadratic discriminant values of
both components for the entire Antarctica 2017 campaign. (b) Dis-
tribution of the normalized angle and corresponding classification.

a temporal resolution high enough to capture the dynamics
of the event is an interesting feature for regions where both
are frequently associated.

Considering the full Antarctic and Alpine data sets, it is
interesting to analyze the potential differences in their char-
acteristics. Figure 14 presents the distributions of the four
descriptors as in Fig. 6 but estimated from the entire data
sets and not only the training sets (for images classified as
pure blowing snow or pure precipitation). It can be seen that
while the differences are limited for precipitation (slightly
more frequent and larger in Davos than in Dumont d’Urville),
they are significant for blowing snow: the blowing snow par-
ticles appear less fragmented (larger size and fractal index),
less scattered within the images (larger distance transform)
and with lower image frequencies in Davos. It should be re-
called that the MASC was located in a wind-protecting fence
in Davos, so first the occurrence of blowing snow is much
smaller (0.6 vs. 36.5 %), and second it is likely related to
fresh snow blown away from the top of the nearby fence.

The MASC resolution (33.5 µm) and thresholding (mini-
mum 3 pixels in area) during image processing lead to an
image resolution not high enough to capture in full detail the
geometry of blowing snow particles. It is nevertheless inter-
esting to plot the distribution of the measured sizes (asso-
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Figure 11. Same as Fig. 10 for the entire Davos campaign.

ciated with the MASC sampling area) for blowing snow and
precipitation cases and compare it to existing values in the lit-
erature. Figure 15 displays the distributions of the measured
size (quantified here as Dmax) for blowing snow and precip-
itation in Antarctica, as well as precipitation in the Swiss
Alps. To help visualize the sometimes overlapping empirical
distributions, the fitted gamma distributions are also plotted.
The units are given in millimeters, with the approximation
that 1 pixel is ∼ 33.5 µm.

As expected, the size distribution of blowing snow corre-
sponds to smaller sizes than precipitation: the mode is around
0.2 mm for blowing snow and 0.3 to 0.4 mm for precipitation.
More importantly, the right tail of the distribution is much
larger for precipitation than for blowing snow. It should also
be noted that the size is slightly larger in the Alpine data set
(as illustrated by the slightly larger mode of the fitted gamma
distributions).

Nishimura and Nemoto (2005) provide size distributions
of blowing snow and precipitation measured in Antarctica at
Mizuho station using a SPC. The bimodality obtained when
combining blowing snow and precipitation data in Fig. 15 is
in general agreement with the mixed case in their Fig. 10.
However, the mode for blowing snow appears at a lower size
(below 50 µm in their Fig. 7 at a height of 3.1 m). As men-
tioned before, this discrepancy is likely due to the limited ef-
fective resolution in MASC images after processing. In addi-
tion, as there are usually many particles in a single image dur-

Figure 12. Consecutive MASC images from Davos and their re-
spective classification label, normalized angle and mixing index.
Label 1 is for blowing snow. A NaN mixing index means pure hy-
drometeor (or pure blowing snow). A mixing index close to 1 (top-
left image) means that it is near pure blowing snow, while a value
close to 0 (bottom-right image) indicates proximity to pure precipi-
tation.

Figure 13. Time series of classified MASC images and correspond-
ing ψ values (averaged over the three views) for a mixed event dur-
ing the Antarctica 2017 campaign.

ing blowing snow, some may be out of focus and artificially
appear larger than they are. So we expect the blowing snow
features extracted from MASC data to be biased towards
larger particles. It should also be noted that the sampling ar-
eas of the two instruments are different (see Sect. 2.1), and
this could partly explain the differences in the obtained dis-
tributions.

Overall, it appears that the MASC images, processed as
explained in Praz et al. (2017), are not adapted to a detailed
study of the geometry of blowing snow particles but are still
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Figure 14. Histograms of selected descriptors for the training blowing snow and precipitation images from the entire Dumont d’Urville and
Davos data sets.

Figure 15. Histograms and fitted gamma distributions of Dmax
for images classified as pure blowing snow and pure hydrometeors
from Antarctica and pure precipitation from the Alps.

relevant to distinguish blowing snow and precipitation, to
characterize mixtures of both and to analyze the dynamics
of blowing snow at high temporal resolutions.

6 Conclusions

A novel method to automatically detect images from the
MASC instrument corresponding to blowing snow is intro-
duced. To classify the images, the method computes four
selected descriptors via image processing. The descriptors
were selected to be relevant for discriminating between blow-
ing snow particles and hydrometeors as well as to be robust
to image-processing artifacts. The classification is achieved
by a two-component Gaussian mixture model fitted on a
subset of 8450 representative images from field campaigns
in Antarctica and Davos, Switzerland. The fitted GMM is
shown to reliably distinguish images corresponding to pure
blowing snow and pure precipitation cases. The GMM pos-
terior probabilities are also mapped into a new index that al-
lows a better identification of mixed images, and a flag sig-
nals whether an image is classified as pure hydrometeor, pure
blowing snow or mixed. For mixed images, an index between
0 and 1 is proposed to indicate if the image is closer to blow-
ing snow or precipitation. Its evaluation remains qualitative
as there are no quantitative observations that can be used as
reference for mixed cases. The outputs are provided for each
image independently or for each triplet of images (i.e., infor-
mation combined over the three cameras of the MASC).

Results from a measurement campaign conducted at the
Dumont d’Urville station on the coast of East Antarctica
from January to July 2017 suggest that about 75 % of the im-
ages are affected by blowing snow and that about 36 % may
be composed of blowing snow particles only (Table 3). The
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results also suggest that about 56 % of the images could be
made of a mix of blowing snow and precipitation particles,
which support findings that in Antarctica blowing snow is
frequently combined with precipitation (e.g., Gossart et al.,
2017). Moreover, time series of the classified images high-
light that blowing snow strongly relies upon fresh snow avail-
ability and often starts shortly after the beginning of precip-
itation (Fig. 13), which is also consistent with conclusions
from Gossart et al. (2017). Results from images taken inside
a double-fence intercomparison reference in Davos at 2540 m
a.s.l between December 2015 and March 2016 indicate that,
despite the sheltering structure, about 60 % of the images
could be affected to some extent by blowing snow particles
from adjacent fence ledges. In terms of the percentage of im-
ages, these numbers tend to be quite large, as the image fre-
quency is usually much higher when strong blowing snow
occurs, but the occurrence is more balanced in terms of time.

As the method was developed and tested on fundamen-
tally different campaigns, it may have a general applicability
to any other MASC images. However, it should be noted that
some descriptors depend on the particular settings (e.g., im-
age size and pixel resolution) used during the aforementioned
campaigns, and a new GMM should be fitted if different set-
tings apply. Further work should be conducted to evaluate if
the method can give satisfactory results on images that do
not include a timestamp, as the image frequency descriptor
could not be utilized. In this case, it could be replaced by
one or a couple of other descriptors listed in Table A1 of Ap-
pendix A to strengthen the model. The method could also
be adjusted to train a model with a supervised learning algo-
rithm that provides posterior probabilities such as Bayesian
classifiers or logistic regression. However, this would imply
some effort to increase the training set. An intercomparison
between different machine-learning algorithms and the cre-
ation of different validation sets could help gain confidence
in the results.

The main limitations of the present method are the as-
sumption of normally distributed features through the use of
the GMM, the too-coarse resolution of the MASC to prop-
erly capture the small end of the distribution of blowing snow
particle size and the dependency of the method on the defined
training set. The latter illustrates the problem of generaliza-
tion. Some extremely high intensity snowfall events, higher
than the ones observed during the Davos and Antarctica cam-
paigns, could be erroneously classified as blowing snow with
the current model due to the nature of the descriptors. In
this case, higher-intensity pure snowfall events should be in-
cluded in the training set. Another example is the size of the
blowing snow particles. During the campaigns in Antarctica,
the MASC was set up on a rooftop at 3 m a.g.l. Several stud-
ies have demonstrated that the size of blowing snow particles
tends to decrease with height (Nishimura and Nemoto, 2005;
Nishimura et al., 2014). Consequently, blowing snow parti-
cles on images from a MASC that would have been set up
at much higher or lower heights may have a bias relative to
the fitted Gaussian distribution of the blowing snow cluster
forDmax. It is thus recommended to follow the procedure de-
scribed in this article and fit a new model, if the one provided
does not perform well in other contexts.
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Appendix A: Feature extraction

Table A1. Full list of all computed descriptors. Descriptors related to each particle are transformed into a single descriptor for the image
(right column). Selected ones are shown with an asterisk.

Image frequency∗ –

Number of particles detected in the image –
Distance to connect all particles –
Number of particles smaller than a given threshold –
Ratio of the area represented by all particles to the area of the smallest polygon encircling them –
Cumulative distance transform∗ –

Maximum diameter∗ quantiles 0–1, moments 1–5
Particle area quantiles 0–1, moments 1–5
Particle convex area quantiles 0–1, moments 1–5
Particle perimeter quantiles 0–1, moments 1–5

Fractal index (FRAC), fractal index squared∗ quantiles 0–1, moments 1–5
Gravelius compactness coefficient (ratio of the perimeter to the one of a circle with equivalent area) quantiles 0–1, moments 1–5
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Appendix B: Image-processing issues

The median filter may not perform satisfactorily, for instance
when the background luminosity is changing rapidly (see
Fig. B1).

Similarly, large precipitation particles may split or appear
as such in the MASC images (see Fig. B2), leading to poten-
tial biases in the number of detected particles.

Figure B1. Raw image, median filter, filtered image and final binary image for an example where the median filter does not perform well
due to changes in sky luminosity. Some artifacts appear on the top right of the binary image

Figure B2. A precipitation particle split into fragments that could be confused with blowing snow particles. The cumulative distance trans-
form descriptor is much less affected by such image-processing issues than the number of particles.
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