Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van den Broeke, M. R., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling, J. Geophys. Res.-Earth Surf., 118, 315–330,
https://doi.org/10.1029/2012jf002559, 2013.
a,
b,
c,
d
Bevan, S. L., Luckman, A. J., Kuipers Munneke, P., Hubbard, B., Kulessa, B.,
and Ashmore, D. W.: Decline in Surface Melt Duration on Larsen C
Ice Shelf Revealed by The Advanced Scatterometer (ASCAT), Earth Space Sci., 5, 578–591,
https://doi.org/10.1029/2018ea000421, 2018.
a,
b,
c,
d,
e,
f,
g,
h,
i
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B.
Am. Meteorol. Soc., 96, 1913–1928,
https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
a
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y.,
and Yamagata, T.: Increased frequency of extreme Indian Ocean Dipole
events due to greenhouse warming, Nature, 510, 254–258,
https://doi.org/10.1038/nature13327, 2014.
a
Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and Domack,
E.: Foehn winds link climate-driven warming to ice shelf evolution in
Antarctica, J. Geophys. Res.-Atmos., 120, 11037–11057,
https://doi.org/10.1002/2015jd023465, 2015.
a
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS
Passive Microwave Data, Version 1, Boulder, CO, USA, NASA
National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
a,
b
Clem, K. R., Renwick, J. A., McGregor, J., and Fogt, R. L.: The relative
influence of ENSO and SAM on Antarctic Peninsula climate, J.
Geophys. Res.-Atmos., 121, 9324–9341,
https://doi.org/10.1002/2016JD025305, 2016.
a
Early, D. S. and Long, D. G.: Image reconstruction and enhanced resolution
imaging from irregular samples, IEEE T. Geosci. Remote
Sens., 39, 291–302,
https://doi.org/10.1109/36.905237, 2001.
a
Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A., Lachlan-Cope, T. A.,
Weeks, M., and Gray, S. L.: Foehn jets over the Larsen C Ice Shelf,
Antarctica, Q. J. Roy. Meteor. Soc., 141, 698–713,
https://doi.org/10.1002/qj.2382,
2015.
a
Furst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves, Nat.
Clim. Change, 6, 479–482,
https://doi.org/10.1038/nclimate2912, 2016.
a
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 1,
NSIDC, National Snow and Ice Data Center, Boulder, CO, USA,
https://doi.org/10.7265/N5KP8037, 2014.
a
Holland, P. R., Corr, H. F. J., Pritchard, H. D., Vaughan, D. G., Arthern,
R. J., Jenkins, A., and Tedesco, M.: The air content of Larsen Ice
Shelf, Geophys. Res. Lett., 38, L10503,
https://doi.org/10.1029/2011gl047245,
2011.
a
Hubbard, B., Luckman, A., Ashmore, D. W., Bevan, S., Kulessa, B.,
Kuipers Munneke, P., Philippe, M., Jansen, D., Booth, A., Sevestre, H.,
Tison, J.-L., O'Leary, M., and Rutt, I.: Massive subsurface ice formed by
refreezing of ice-shelf melt ponds, Nat. Commun., 7, 11897,
https://doi.org/10.1038/ncomms11897, 2016.
a
Knowles, K., Njoku, E. G., Armstrong, R., and Brodzik, M. J.: Nimbus-7 SMMR
Pathfinder Daily EASE-Grid Brightness Temperatures, Version 1.
Boulder, Colorado USA. NASA National Snow and Ice Data
Center Distributed Active Archive Center,
https://doi.org/10.5067/36SLCSCZU7N6, 2000.
a
Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363,
https://doi.org/10.5194/tc-6-353-2012, 2012.
a,
b
Kuipers Munneke, P., Luckman, A. J., Bevan, S. L., Smeets, C. J. P. P.,
Gilbert, E., van den Broeke, M. R., Wang, W., Zender, C., Hubbard, B.,
Ashmore, D., Orr, A., and King, J. C.: Intense Winter Surface Melt on
an Antarctic Ice Shelf, Geophys. Res. Lett., 45, 7615–7623,
https://doi.org/10.1029/2018gl077899, 2018.
a
Long, D. G. and Hicks, B. R.: Standard BYU QuikSCAT and Seawinds
Land/Ice Image Products, Tech. rep., BYU Center for Remote Sensing,
Microwave Earth Remote Sensing Laboratory, BYU Center for Remote Sensing,
Brigham Young University, 459 Clyde Building, Provo, UT 84602,
available at:
http://www.scp.byu.edu/docs/EnhancedFAQ.html (last access: 1 March 2020), 2010. a
Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Munneke, P. K., King, J.,
and Barrand, N. E.: Surface melt and ponding on Larsen C Ice Shelf
and the impact of föhn winds, Antarct. Sci., 26, 625–635,
https://doi.org/10.1017/s0954102014000339, 2014.
a
Marshall, G. J., Orr, A., van Lipzig, N. P. M., and King, J. C.: The Impact
of a Changing Southern Hemisphere Annular Mode on Antarctic
Peninsula Summer Temperatures, J. Climate, 19, 5388–5404,
https://doi.org/10.1175/jcli3844.1, 2006.
a
Nicolas, J. P. and Bromwich, D. H.: New Reconstruction of Antarctic
Near-Surface Temperatures: Multidecadal Trends and Reliability of
Global Reanalyses, J. Climate, 27, 8070–8093,
https://doi.org/10.1175/JCLI-D-13-00733.1, 2014.
a
Oldenborgh, G. J. v. and Burgers, G.: Searching for decadal variations in
ENSO precipitation teleconnections, Geophys. Res. Lett., 32, L15701,
https://doi.org/10.1029/2005GL023110, 2005.
a,
b
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
a
Picard, G. and Fily, M.: Surface melting observations in Antarctica by
microwave radiometers: Correcting 26-year time series from changes in
acquisition hours, Remote Sens. Environ., 104, 325–336,
https://doi.org/10.1016/j.rse.2006.05.010, 2006.
a,
b,
c
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
Improved In Situ and Satellite SST Analysis for Climate,
J. Climate, 15, 1609–1625,
https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
a
Rott, H., Skvarca, P., and Nagler, T.: Rapid Collapse of Northern Larsen Ice Shelf, Antarctica, Science, 271, 788–792,
https://doi.org/10.1126/science.271.5250.788, 1996.
a
Rott, H., Rack, W., Skvarca, P., and De Angelis, H.: Northern Larsen Ice
Shelf, Antarctica: further retreat after collapse, Ann. Glaciol., 34,
277–282,
https://doi.org/10.3189/172756402781817716, 2002.
a
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, J. Glaciol., 46, 516–530,
https://doi.org/10.3189/172756500781833043, 2000.
a
Schannwell, C., Cornford, S., Pollard, D., and Barrand, N. E.: Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves, The Cryosphere, 12, 2307–2326,
https://doi.org/10.5194/tc-12-2307-2018, 2018.
a
Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B.,
Downie, R., Edwards, T., Hubbard, B., Marshall, G., Rogelj, J., Rumble, J.,
Stroeve, J., and Vaughan, D.: The Antarctic Peninsula Under a 1.5
∘C
Global Warming Scenario, Front. Environ. Sci., 7, 102,
https://doi.org/10.3389/fenvs.2019.00102, 2019.
a
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science, 368, 1239–1242,
https://doi.org/10.1126/science.aaz5845, 2020.
a
Tedesco, M. and Monaghan, A. J.: An updated Antarctic melt record through
2009 and its linkages to high-latitude and tropical climate variability,
Geophys. Res. Lett., 36, L18502,
https://doi.org/10.1029/2009gl039186, 2009.
a
Trusel, L. D., Frey, K. E., and Das, S. B.: Antarctic surface melting dynamics:
Enhanced perspectives from radar scatterometer data, J. Geophys. Res., 117,
F02023,
https://doi.org/10.1029/2011jf002126, 2012.
a
Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S.,
Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of
21st century warming on Antarctic Peninsula consistent with natural
variability, Nature, 535, 411–415,
https://doi.org/10.1038/nature18645, 2016.
a
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., and Rensch,
P. v.: Compounding tropical and stratospheric forcing of the record low
Antarctic sea-ice in 2016, Nat. Commun., 10, 1–9,
https://doi.org/10.1038/s41467-018-07689-7, 2019.
a
Wiesenekker, J. M., Kuipers Munneke, P., Van den Broeke, M. R., and Smeets, C. J. P. P.: A Multidecadal Analysis of Föhn Winds over Larsen C
Ice Shelf from a Combination of Observations and Modeling,
Atmosphere, 9, 172,
https://doi.org/10.3390/atmos9050172, 2018.
a
Wismann, V.: Monitoring of seasonal snowmelt on Greenland with ERS
scatterometer data, IEEE T. Geosci. Remote Sens., 38,
1821–1826,
https://doi.org/10.1109/36.851766, 2000.
a