Articles | Volume 14, issue 10
The Cryosphere, 14, 3551–3564, 2020
https://doi.org/10.5194/tc-14-3551-2020
The Cryosphere, 14, 3551–3564, 2020
https://doi.org/10.5194/tc-14-3551-2020

Research article 27 Oct 2020

Research article | 27 Oct 2020

The 2020 Larsen C Ice Shelf surface melt is a 40-year record high

Suzanne Bevan et al.

Related authors

Brief communication: Thwaites Glacier cavity evolution
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021,https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
An updated seabed bathymetry beneath Larsen C Ice Shelf, Antarctic Peninsula
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020,https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019,https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary
Centuries of intense surface melt on Larsen C Ice Shelf
Suzanne L. Bevan, Adrian Luckman, Bryn Hubbard, Bernd Kulessa, David Ashmore, Peter Kuipers Munneke, Martin O'Leary, Adam Booth, Heidi Sevestre, and Daniel McGrath
The Cryosphere, 11, 2743–2753, https://doi.org/10.5194/tc-11-2743-2017,https://doi.org/10.5194/tc-11-2743-2017, 2017
Short summary
Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017,https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Mechanics and dynamics of pinning points on the Shirase Coast, West Antarctica
Holly Still and Christina Hulbe
The Cryosphere, 15, 2647–2665, https://doi.org/10.5194/tc-15-2647-2021,https://doi.org/10.5194/tc-15-2647-2021, 2021
Short summary
Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021,https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021,https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting
Tong Zhang, Stephen F. Price, Matthew J. Hoffman, Mauro Perego, and Xylar Asay-Davis
The Cryosphere, 14, 3407–3424, https://doi.org/10.5194/tc-14-3407-2020,https://doi.org/10.5194/tc-14-3407-2020, 2020
A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020,https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S., and Ligtenberg, S. R. M.: Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095, https://doi.org/10.1002/2017GL076652, 2018. a
Arblaster, J. M. and Meehl, G. A.: Contributions of External Forcings to Southern Annular Mode Trends, J. Climate, 19, 2896–2905, https://doi.org/10.1175/JCLI3774.1, 2006. a
Armstrong, R., Knowles, K., Brodzik, M. J., and Hardman, M. A.: DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures, Version 2. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/3EX2U1DV3434, 1994. a
Ashcraft, I. S. and Long, D. G.: Comparison of methods for melt detection over Greenland using active and passive microwave measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006. a, b, c
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a
Download
Short summary
In February 2020, along with record-breaking high temperatures in the region, satellite images showed that the surface of the largest remaining ice shelf on the Antarctic Peninsula was experiencing a lot of melt. Using archived satellite data we show that this melt was greater than any in the past 40 years. The extreme melt followed unusual weather patterns further north, highlighting the importance of long-range links between the tropics and high latitudes and the impact on ice-shelf stability.