Articles | Volume 14, issue 9
The Cryosphere, 14, 3235–3247, 2020
https://doi.org/10.5194/tc-14-3235-2020
The Cryosphere, 14, 3235–3247, 2020
https://doi.org/10.5194/tc-14-3235-2020
Research article
29 Sep 2020
Research article | 29 Sep 2020

Possible biases in scaling-based estimates of glacier change: a case study in the Himalaya

Argha Banerjee et al.

Related authors

The control of climate sensitivity on variability and change of summer runoff from two glacierised Himalayan catchments
Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-499,https://doi.org/10.5194/hess-2021-499, 2021
Revised manuscript not accepted
Short summary
Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate
Argha Banerjee
The Cryosphere, 11, 133–138, https://doi.org/10.5194/tc-11-133-2017,https://doi.org/10.5194/tc-11-133-2017, 2017
Short summary
Estimating the avalanche contribution to the mass balance of debris covered glaciers
A. Banerjee and R. Shankar
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-641-2014,https://doi.org/10.5194/tcd-8-641-2014, 2014
Revised manuscript not accepted

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022,https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes
Nicole Schaffer and Shelley MacDonell
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-167,https://doi.org/10.5194/tc-2021-167, 2021
Revised manuscript accepted for TC
Short summary
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021,https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary

Cited articles

Adhikari, S. and Marshall, S. J.: Glacier volume-area relation for high-order mechanics and transient glacier states, Geophys. Res. Lett., 39, L16505, https://doi.org/10.1029/2012GL052712, 2012. a
Bach, E., Radić, V., and Schoof, C.: How sensitive are mountain glaciers to climate change? Insights from a block model, J. Glaciol., 64, 247–258, https://doi.org/10.1017/jog.2018.15, 2018. a, b, c
Bahr, D. B.: Width and length scaling of glaciers, J. Glaciol., 43, 557–562, https://doi.org/10.3189/S0022143000035164, 1997. a, b
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. a
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: A review of volume-area scaling of glaciers, Rev. Geophys., 53, 95–140, https://doi.org/10.1002/2014RG000470, 2015. a, b, c, d, e, f, g, h, i, j, k, l
Download
Short summary
Simple models of glacier dynamics based on volume–area scaling underestimate climate sensitivity and response time of glaciers. Consequently, they may predict a faster response and a smaller long-term glacier loss. These biases in scaling models are established theoretically and are analysed in detail by simulating the step response of a set of 703 Himalayan glaciers separately by three different models: a scaling model, a 2-D shallow-ice approximation model, and a linear-response model.