
The Cryosphere, 14, 3235–3247, 2020
https://doi.org/10.5194/tc-14-3235-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Possible biases in scaling-based estimates of glacier change:
a case study in the Himalaya
Argha Banerjee, Disha Patil, and Ajinkya Jadhav
ECS, IISER Pune, Pune 411008, India

Correspondence: Argha Banerjee (argha@iiserpune.ac.in)

Received: 30 November 2019 – Discussion started: 9 January 2020
Revised: 10 August 2020 – Accepted: 27 August 2020 – Published: 29 September 2020

Abstract. Approximate glacier models are routinely used to
compute the future evolution of mountain glaciers under any
given climate-change scenario. A majority of these models
are based on statistical scaling relations between glacier vol-
ume, area, and/or length. In this paper, long-term predictions
from scaling-based models are compared with those from
a two-dimensional shallow-ice approximation (SIA) model.
We derive expressions for climate sensitivity and response
time of glaciers assuming a time-independent volume–area
scaling. These expressions are validated using a scaling-
model simulation of the response of 703 synthetic glaciers
from the central Himalaya to a step change in climate. The
same experiment repeated with the SIA model yields about 2
times larger climate sensitivity and response time than those
predicted by the scaling model. In addition, the SIA model
obtains area response time that is about 1.5 times larger than
the corresponding volume response time, whereas scaling
models implicitly assume the two response times to be equal
to each other. These results indicate the possibility of a low
bias in the scaling model estimates of the long-term loss of
glacier area and volume. The SIA model outputs are used
to obtain parameterisations, climate sensitivity, and response
time of glaciers as functions of ablation rate near the ter-
minus, mass-balance gradient, and mean thickness. Using a
linear-response model based on these parameterisations, we
find that the linear-response model outperforms the scaling
model in reproducing the glacier response simulated by the
SIA model. This linear-response model may be useful for
predicting the evolution of mountain glaciers on a global
scale.

1 Introduction

In the coming decades, shrinking mountain glaciers will
contribute significantly to global eustatic sea-level rise (e.g.
Radić et al., 2014; Hock et al., 2019; Marzeion et al., 2020)
and impact the hydrology of glacierised basins worldwide
(e.g. Huss and Hock, 2018; Immerzeel et al., 2020). The reli-
ability of the predicted changes in global sea level and those
in the regional hydrology of various river basins is, thus, in-
timately tied to the accuracy of the predicted total ice loss
from mountain glaciers for any given climate scenario.

Instantaneous (annual) glacier surface mass balance can be
calculated readily using climate model outputs. In contrast,
any prediction of the long-term evolution of a glacier requires
simulating the slow (decadal) changes in glacier area and ge-
ometry. Ideally, this is to be done by solving the dynamical
ice-flow equations (e.g. Hutter, 1983). However, the numeri-
cal cost of such a computation on a global scale is high, even
if simplified approximate descriptions of the ice-flow equa-
tions, like shallow-ice approximation (SIA) (Hutter, 1983)
or its higher-order variants, were to be used (Egholm et al.,
2011; Clarke et al., 2015). One-dimensional SIA-based mod-
elling tools are promising developments in this regard (Maus-
sion et al., 2019; Zekollari et al., 2019; Rounce et al., 2020).
The uncertainties associated with various input parameters,
e.g. an uncertain glacier bedrock, limit the benefit of using
the physically based ice-flow models (Farinotti et al., 2016).
Consequently, a majority of the recent estimates of the global
to regional scale evolution of mountain glaciers relies on low-
dimensional approximate parameterisations of glacier dy-
namics (e.g. Radić et al., 2014). The results from these sim-
plified models have provided critical inputs for multimodel
ensemble-averaged estimates of future sea-level rise (Hock
et al., 2019; Marzeion et al., 2020), assessments of regional
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to global vulnerability to sea-level rise (e.g. Kulp and Strauss,
2019), and understanding the co-evolution of glaciers, river
runoff, and climate in glacierised regions like high-mountain
Asia (e.g. Zhao et al., 2014; Zhang et al., 2015; Kumar et al.,
2019).

While some of the approximate parameterisations of
glacier dynamics are empirical prescriptions for adjusting the
hypsometry of the transient glaciers (Raper and Braithwaite,
2006; Huss et al., 2010; Huss and Hock, 2015), a major-
ity of them are primarily based on a statistical volume–area
(or volume–area–length) scaling relation. This volume–area
scaling equation relates glacier volume V to glacier area A
as

V = cAγ , (1)

where γ is a dimensionless scaling exponent, and c is a scale
factor (Bahr et al., 2015). This relation was established em-
pirically (e.g. Chen and Ohmura, 1990) and subsequently
proved using dimensional analysis (Bahr et al., 1997, 2015).
The derivation utilised the empirical sub-linear scaling of
glacier width and ablation rate with the glacier length (Bahr,
1997).

Theoretically, the scaling exponent γ is time-independent
and can be expressed as γ = 1+ m+1

m+n+3 (Bahr et al., 2015).
Here, n is the power-law exponent of Glen’s rheology of
ice (Glen, 1955), and m is the scaling exponent of abla-
tion rate with glacier length (Bahr, 1997). For an individ-
ual glacier, the scale-factor c captures the control of all the
glacier-specific factors (except area) on its volume (Bahr et
al., 2015). There is no available theoretical prescription for
obtaining the value of c for an arbitrary glacier. c may be
calibrated for a particular glacier based on available inde-
pendent measurements of area and volume over an epoch,
but its time dependence can be accessed only with a detailed
model simulation (Bahr et al., 2015). For a large enough en-
semble, glacier area typically spans a few orders of magni-
tude. However, the corresponding c values vary over a rel-
atively restricted range (Bahr et al., 2015). This allows an
approximate statistical description of any set of glaciers us-
ing Eq. (1), where a single best-fit c and a fixed γ are used
(Bahr et al., 2015). Such a best-fit scaling relation provides
a fairly accurate estimate of the total ice volume of a large
set of glaciers, but the corresponding predictions for the in-
dividual glaciers have relatively large uncertainties (Bahr et
al., 2015). Note that there is no theoretical constraint for c
to be time-independent for a given set of non-steady glaciers
(Bahr et al., 2015).

It is the above statistical interpretation of the scaling re-
lation, where a best-fit time-invariant c and a constant γ are
used to describe an ensemble of glaciers, that is exploited in
the scaling-based approximate models of glacier dynamics
(e.g. Radić et al., 2007). Hereinafter, we refer to the models
based on such an approach (e.g. Radić et al., 2007) as “scal-
ing models”. As the present study investigates the possibility
of biases in scaling model predictions of glacier evolution,

we restrict ourselves to the above statistical interpretation of
the scaling relation.

The performance of scaling models in simulating the tran-
sient glacier response has previously been tested against var-
ious dynamical ice-flow models (e.g. SIA, higher-order ap-
proximations, or Stokes’ model) in one to three dimensions
using both idealised (Radić et al., 2007; Adhikari and Mar-
shall, 2012) and realistic geometries (Radić et al., 2008;
Farinotti and Huss, 2013). The uncertainties introduced by
a scaling-model parameterisation of the evolution of glaciers
with realistic geometries were considered by Farinotti and
Huss (2013). The spirit of the present study is quite similar
to that of Farinotti and Huss (2013), except that we are in-
vestigating the possible intrinsic biases of scaling models in
a situation where the parameters (c and γ ) are known accu-
rately. The specific objectives of the present study are

1. to obtain analytical predictions for climate sensitivity
and response time of glaciers in a scaling model;

2. to compare the climate sensitivity and response time of
a large number of synthetic glaciers with realistic ge-
ometries, as obtained from a scaling model and a 2-D
SIA model;

3. to investigate the possibility of long-term biases in scal-
ing model estimates of changes in glacier area and vol-
ume with respect to corresponding SIA results;

4. to find convenient parameterisations of glacier-response
properties obtained from the SIA simulations and de-
velop an accurate linear-response model.

Note that a linear-response model introduced in the last ob-
jective is a low-complexity model obtained in the limit of
a relatively small deviation around a steady state (e.g. Oer-
lemans, 2001). To apply this model to a large number of
glaciers, the response time and climate sensitivity need to
be specified for each of them. A lack of accurate and nu-
merically convenient parameterisations of these dynamical
properties may have limited its application (Harrison et al.,
2001; Lüthi, 2009; Bach et al., 2018). Here, we aim to obtain
parameterisations of the glacier-response properties as func-
tions of a few easily accessible properties of the glaciers, us-
ing results from 2-D SIA simulations of a large ensemble of
synthetic glaciers with realistic geometries.

The paper is organised as follows. First, we theoretically
derive the glacier-response properties within a time-invariant
scaling assumption (Sects. 2.1 and 3.1). Then, we compare
the performance of a representative scaling model (Radić et
al., 2007) with that of a two-dimensional SIA model, in simu-
lating the response of 703 idealised Himalayan glaciers in the
Ganga basin to a hypothetical step rise in equilibrium line al-
titude (ELA) (Sects. 2.2 and 3.2). We use the response prop-
erties obtained from the scaling model to test the above an-
alytical expressions for glacier-response properties. The cor-
responding SIA results are used to obtain parameterisations
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for the linear-response properties of realistic glaciers. The ac-
curacy of the scaling model and a linear-response model in
reproducing the SIA-derived long-term loss of total glacier
area and volume is assessed for the above 703 glaciers. The
performance of the linear-response model is also tested for
an independent set of 164 glaciers in the western Himalaya
without any further calibration. We also discuss the applica-
bility of the linear-response model for actual computation of
future glacier loss for a set of transient glaciers forced by any
arbitrary time-variation ELA (Sect. 3.3).

2 Methods

2.1 Theoretical methods

For a theoretical analysis of the glacier-response properties
implied by a scaling model, we consider a set of hypotheti-
cal glaciers that respond to a warming climate such that the
volume–area scaling relation (Eq. 1) is valid, and c is a given
time-invariant constant. Then, the fractional changes in area
and volume of these glaciers, in the limit of small changes,
are related as follows.

1V ≈ cγAγ−11A= γ
V

A
1A= γ h1A, (2)

where 1V and 1A are the changes in area and volume, and
the mean ice thickness is h= V/A. The above equation is the
basis of the scaling models of glacier evolution (e.g. Radić et
al., 2007). We have derived analytical expressions for glacier-
response time and climate sensitivity starting from this equa-
tion, essentially following the line of arguments by Harrison
et al. (2001).

2.2 Numerical methods

We simulated the response of an ensemble of synthetic
clean glaciers with realistic geometries to a hypothetical step
change in ELA using three different methods (scaling, SIA,
and linear-response models). For this exercise, we considered
all the 814 glaciers larger than 2 km2 in the Ganga basin, the
central Himalaya (Fig. S1 in the Supplement). The ice-free
bedrock for each glacier was obtained using available ice-
thickness estimates (Kraaijenbrink et al., 2017) and surface-
elevation data (NASA et al., 2019). The following idealised
elevation-dependent linear mass-balance profile was used,

b(z)=Max {β(z−E),b0} . (3)

Here β is the balance gradient, z is the surface elevation, and
E is the equilibrium-line altitude (ELA). b0 is a cut-off on
maximum accumulation taken to be 1.0 m yr−1. The choice
of β is described later. In our mass-balance model, we ne-
glected complicating factors like supraglacial debris cover
and its effects on ablation, and the avalanche contribution
to accumulation (Laha et al., 2017). The debris effects are

expected to modify the scaling relations as well (Banerjee,
2020). Overall, the simulated glaciers cannot be considered
faithful copies of the actual Himalayan glaciers. Rather, they
constituted an ensemble of synthetic clean glaciers with re-
alistic geometries (e.g. Farinotti and Huss, 2013) to be used
here for a comparative study of the performances of the three
models.

2.2.1 A 2-D SIA model

The ice-flow dynamics was implemented within a two-
dimensional SIA (Hutter, 1983) as a numerically efficient
non-linear diffusion problem (Oerlemans, 2001). While SIA
may not be the best method for simulating valley glaciers due
to its limitation in describing ice flow influenced by longi-
tudinal stresses and/or steep bedrock slopes (Le Meur et al.,
2004), there is enough evidence in the literature that SIA does
a reasonable job of describing both the steady and transient
dynamics of valley glaciers (e.g. Leysinger Vieli and Gud-
mundsson, 2004; Le Meur et al., 2004; Radić et al., 2008).
The contribution of sliding to the flow was neglected here for
simplicity.

The value of Glen’s flow-law exponent was assumed to
be 3 (e.g. Oerlemans, 2001). For the sake of simplicity, we
did not tune any of the model parameters to match the ob-
served ice thickness and/or flow velocity on any of these
glaciers. The only exception was ELA which was tuned
to obtain the initial steady state as described below. In or-
der to avoid possible dependence of the results on any spe-
cific choice of parameters, we picked the parameters related
to mass balance and flow from random distributions. The
rate constant of Glen’s law was picked randomly from the
set {0.5,0.6, . . .,1.4,1.5}× 10−24 Pa−3 s−1 for each of the
glaciers. This range of values is comparable to those used to
model mountain glaciers previously (Radić et al., 2008). The
balance gradient β was also picked randomly from the set of
values {0.005,0.006, . . .,0.009,0.010} yr−1 for each glacier.
This range of β values is comparable to the observed mass-
balance gradients in the Himalaya (e.g. Wagnon et al., 2013).

The model was integrated using a linearised implicit finite-
difference scheme (Hindmarsh and Payne, 1996), with a no-
slip boundary condition at the ice–bedrock interface and a
no-flux boundary condition at the domain boundary. An it-
erative conjugate-gradient method was employed within the
implicit scheme, with a spatial grid size of 100 m× 100 m
and time steps of 0.01 years. To avoid the known problem
of a possible violation of mass conservation in SIA on steep
terrains (Jarosch et al., 2013), we smoothed the bedrock with
a centrally weighted 3×3 moving-window averaging. In ad-
dition, the conservation of ice was explicitly monitored by
tracking the total accumulation and ablation on the glacier
surface and the ice flux out of the glacier boundary in the
ablation zone. The cumulative net gain of ice matched the to-
tal ice in the domain to within one part per 109 at any time
t . Only on three glaciers (out of the total of 814) was a vi-
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olation of conservation due to steep bedrock observed, and
these three were not considered in our analysis (Fig. S2).
One more glacier had to be removed where an erroneously
mapped truncated tributary led to an unrealistic piling up of
ice (Fig. S2).

The SIA simulation was run starting with an empty
bedrock, with the initial E being the median elevation. The
simulation was continued until an approximate steady state
was reached such that the absolute value of the net specific
balance was less than 10−4 m yr−1. Subsequently, E was
moved up or down, and the simulation was repeated until the
extent of the steady state was similar to the present glacier
extent (RGI Consortium, 2017) (Fig. S2). Once the desired
steady state was found (see Fig. S3 for a few examples), the
glaciers were perturbed by a 50 m step rise in ELA. Subse-
quently, the annual values of area and volume were recorded
for the next 1000 years (Fig. S4). The mean and standard
deviation of the modelled ELA for these 810 glaciers were
5480 and 445 m, respectively.

Out of the total 810 simulated glaciers from the Ganga
basin, on 98 glaciers the fractional change in glacier area
at t = 1000 was more than 50 %, and these were excluded
from the analysis. This was necessary as a linear-response
model can only be applied to glaciers with small relative
changes (Oerlemans, 2001). We confirmed that the nature
of our results does not depend on the precise value of this
cut-off (Fig. S6). An additional nine glaciers had response
time larger than 500 years and they were removed. This was
done to avoid a possible overestimation of the response time
whenever its magnitude was comparable to or larger than the
total simulation period of 1000 years (Fig. S7). The removal
of these nine glaciers led to a reduction in the number (total
area) of simulated glaciers by only ∼ 1 % (∼ 2 %).

Finally, we were left with an ensemble of 703 synthetic
Himalayan glaciers (Fig. S1), with area in the range of 2.2–
156.0 km2 (a median value 5.5 km2). The steady glaciers
modelled with SIA had, on average, 1.25 times larger area
and 1.66 times larger ice thickness (Figs. S3, S8) compared
to the corresponding estimates of Kraaijenbrink et al. (2017).
The higher thickness of the modelled glaciers can be ascribed
to a larger modelled area, a steady mass balance, and an un-
calibrated SIA model. The total area and volume of these 703
synthetic glaciers were 6865 and 847 km3, respectively. This
set covered 86 % of the total 810 glaciers number-wise and
89 % area-wise. The distributions of glacier area and mean
slope for the two sets of 810 and 703 synthetic glaciers are
shown in Fig. S8.

2.2.2 Scaling model

The response of the above set of 703 steady-state glaciers to
a 50 m instantaneous rise in ELA was also computed with
a scaling model (Radić et al., 2007). The SIA-derived ini-
tial steady-state volume, area, and hypsometry (with the bin
size of 25 m) for each of the glaciers were used as the start-

ing point. For any of the modelled glaciers, the scaling and
SIA models used the same mass-balance parameters. At any
time t during the evolution, the mass-balance function (Eq. 3)
was summed over the instantaneous glacier hypsometry to
obtain the net volume loss for that particular time step. The
corresponding area loss was then obtained using Eq. (2).
The reduction in the area was assumed to have taken place
in the lowest elevation band/s of each glacier (Radić et al.,
2007). The scaling exponent was fixed at γ = 1.286 because
of the assumed linear mass-balance profiles of the simulated
glaciers (i.e., m= 1). The annual-resolution time series of
area and volume were recorded for 1000 years for each of
the glaciers.

2.2.3 Glacier-response properties

For each of the 703 glaciers, the time series of volume and
area as obtained using the SIA and scaling models were sep-
arately fitted to linear-response forms (e.g. Eq. 9 below) to
obtain the corresponding best-fit values of the four linear-
response parameters (the climate sensitivities and the re-
sponse times of area and volume) for each of them (Fig. S4).

Note that applying a step change in ELA of a steady-
state glacier to obtain the step-response function is a standard
prescription for obtaining glacier-response properties (Oerle-
mans, 2001; Leysinger Vieli and Gudmundsson, 2004; Harri-
son et al., 2001; Bach et al., 2018). Within a linear-response
assumption, the step responses of volume and area have an
exponential form (e.g. Eq. 9 below). The asymptotic expo-
nential decay time is the response time of the glacier, and the
asymptotic magnitude of the decay is the climate sensitivity.
Because of the deviations of the simulated response from a
pure exponential decay (Fig. S4), the best-fit response time
may be slightly different from the e-folding time, which has
been used in some of the previous studies (e.g. Leysinger
Vieli and Gudmundsson, 2004; Bach et al., 2018). However,
we take the best-fit asymptotic decay time to be the response
time. By definition, it minimises the deviation between the
predictions of the SIA and linear-response models and thus
improves the performance of the latter in reproducing SIA re-
sults to some extent. We confirm that the difference between
the above two definitions of the response time is small.

The best-fit linear-response properties obtained from the
scaling model results for the 703 glaciers were used to ver-
ify the corresponding theoretical expressions obtained from
scaling theory (Eqs. 8, 11, 12, 13 below). The best-fit re-
sponse times and climate sensitivities obtained from the SIA
simulations of the 703 glaciers were used to fit for empir-
ical relations that are motivated by the corresponding ex-
pressions derived from the scaling theory. These fitted forms
would allow estimation of the response properties of any
given glaciers as functions of properties like mean thickness,
mass balance gradient, and so on. All the above fits were
performed on a log-log scale, and R2 values of the fits were
noted.
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2.2.4 A linear-response model

The best-fit empirical parameterisations for climate sensitiv-
ity and response time obtained by fitting the SIA results as
described above (given in Eqs. 14–17 later) were used to
run a linear-response model simulation for any given glacier.
This model was applied to simulate the response of the above
703 synthetic Himalayan glaciers to a 50 m step change in
ELA at t = 0. We emphasise that for the linear-response
model, we did not use the best-fit response properties of the
individual glacier derived from the SIA simulations. Rather,
the parameterisations of the same obtained by fitting the SIA-
derived response properties (given in Eqs. 14–17 later) were
utilised. These parameterisations thus allow the model to be
applied to any other set of Himalayan glaciers without the
need for simulating them with SIA first.

To assess the uncertainty of the linear-response model out-
put, the uncertainty of each of the fit parameters was set equal
to the corresponding standard error, and the 95 % uncertainty
band for the linear-response model outputs was generated us-
ing a Monte Carlo method.

To test the applicability of the above linear-response model
that was calibrated using SIA results for the 703 central Hi-
malayan glaciers, the same model was applied to a differ-
ent set of 204 glaciers from the western Himalaya. The pa-
rameterisations developed for the central Himalayan glaciers
as discussed above (given in Eqs. 14–17 later) were used
to estimate the response properties of each of these west-
ern Himalayan glaciers using input values of correspond-
ing mass-balance gradient, mean thickness, and ablation rate
near the terminus. For these western Himalayan glaciers, SIA
and scaling model simulations were also performed follow-
ing the procedures as detailed above. The glaciers showing
more than 50 % change at the 500-year mark in the corre-
sponding SIA simulations were left out as before, and the
time series of total area and total volume of 164 western Hi-
malayan glaciers obtained using the three different models
were compared.

3 Results and discussions

3.1 Theoretical results

Below, we derive some relevant consequences of the time-
invariant scaling assumption, including expressions for the
climate sensitivity and response time of glacier area and vol-
ume. These results are expected to be generally valid for all
scaling models that are based on Eq. (2).

3.1.1 The rates of area and volume change

Equation (2), which was derived from Eq. (1) assuming a
time-independent c, implies

V̇ = γ cAγ−1Ȧ= γ hȦ. (4)

Here V̇ and Ȧ denote the corresponding rates of change of
glacier volume and area, respectively. If the net specific bal-
ance is δb (m yr−1), then the annual rate of volume loss
V̇ = δbA. This, together with Eq. (4), implies

Ȧ=
δb

γ h
A, (5)

=
δb

γ c
A2−γ . (6)

Thus, in the scaling models, the rate of change of area scales
with the glacier area with an exponent (2− γ ). This is con-
sistent with empirical observations for real glaciers as well
(Banerjee and Kumari, 2019). As the scale factor δb

γ c
on the

right-hand side (RHS) of Eq. (5) is proportional to the net
specific mass balance, this may be a convenient way of ob-
taining mean regional thinning rates from relatively straight-
forward remote-sensing measurements of the rate of area
change. However, the accuracy of this relation is contingent
on the validity of the assumption of a time-independent c.

3.1.2 Area response time

To compute the area response time, let us consider a constant
perturbation, i.e., a step change in ELA applied to a steady
glacier for time t ≥ 0 (e.g. Oerlemans, 2001). Let’s denote
the corresponding instantaneous net negative balance at t = 0
by δb0A, the asymptotic (t→∞) shrinkage of glacier area
by 1A∞ ≡ A(0)−A(t→∞), and that of ice volume by
1V∞. Then, we have (Harrison et al., 2001)

1A∞bt+β1V∞ ≈−δb0A. (7)

Here bt is the ablation rate near the terminus. The area re-
sponse time of the glacier can be expressed as τA ≈1A∞/Ȧ.
Therefore, using the above expressions for Ȧ (Eq. 5) and
1A∞ (Eq. 7), we obtain

τA =−

(
bt

γ h
+β

)−1

≡ τ ∗. (8)

Here the symbol τ ∗ is a convenient shorthand notation for

the timescale −
(
bt
γ h
+β

)−1
. In the above derivation, 1V∞

that appears in Eq. (7) is eliminated with the help of Eq. (2).
Equation (8) is comparable with the expression of area re-
sponse time as given by Harrison et al. (2001) or Lüthi
(2009).
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3.1.3 Volume response time

The instantaneous change in volume (1V (t)) for a steady
glacier perturbed by a small step change in ELA at t = 0 is
given by

1V (t)=1V∞
(
1− e−t/τv

)
, (9)

where τv is the volume response time and 1V∞ is the vol-
ume sensitivity (e.g. Lüthi, 2009). Now, V (t),V (0), and
V (t→∞) appearing in Eq. (9) can be expressed in terms
of A(t),A(0), and A(t→∞), respectively, with the help of
corresponding scaling relations (Eq. 1). This, in the limit of
small fractional changes in area, yields

1A(t)=1A∞
(
1− e−t/τv

)
. (10)

Comparing the above two equations and using Eq. (8), one
obtains

τA = τV = τ
∗. (11)

Thus, all scaling models implicitly assume the area and vol-
ume response times of a glacier to be equal to each other.
However, it is known that for mountain glaciers area response
time is larger than the volume response time within an SIA
model (Oerlemans, 2001; Leysinger Vieli and Gudmunds-
son, 2004). Therefore, the assumed equality of the two re-
sponse times in scaling models (Eq. 11) contradicts the ex-
isting SIA results. This is an intrinsic bias that is present in
any scaling model.

After a step change in ELA, as the ablation zone shrinks,
the initial net negative balance of a glacier gradually decays
to zero over a period determined by the corresponding re-
sponse time. A longer area response time in SIA implies that
this reduction in the ablation zone is slower here than that in
a scaling model. A corresponding feedback of a larger abla-
tion zone on the net mass balance should then lead to a higher
long-term volume loss in an SIA model than that in a scaling
model. This indicates the possibility of a low bias in scal-
ing model estimates of the climate sensitivity of volume, or
equivalently, that in the long-term changes in glacier volume
due to any rise in ELA.

3.1.4 Climate sensitivity of area and volume

An expression for the climate sensitivity of glacier area
(1A∞), which is the asymptotic change in area due to a
change in ELA by δE, is obtained by eliminating1V∞ from
Eq. (7) using Eq. (2),

1A∞

A
=
τ ∗βδE

γh
≡ α∗. (12)

Here we have used the definition of τ ∗ (Eq. 8), and that of
δb0 ≈ βδE for a step change in ELA by δE. The RHS of the
above equation is denoted by α∗ for convenience.

The corresponding expression for 1V∞
V

is then obtained
using Eq. (2),

1V∞

V
= γα∗. (13)

Again, Eq. (13) is comparable to the expression of volume
sensitivity as derived by Harrison et al. (2001), where the
authors used an arbitrary thickness scale H , instead of the
denominator of γ h appearing in the definition of α∗ above.

Strictly speaking, the climate sensitivity of area and vol-
ume with respect to a change in ELA should be defined as
1A∞
δE

and 1V∞
δE

, respectively. However, in this paper, we use
1A∞ and1V∞ as the corresponding sensitivities to simplify
the notation.

3.2 Numerical results

3.2.1 Volume–area scaling and a time-dependent scale
factor in the SIA model

Following Eq. (1), a power-law relation between the area
and volume of the 703 glaciers with an exponent γ = 1+
m+1
m+n+3 = 1.286 is expected as m= 1 and n= 3. The ensem-
ble of glaciers modelled with SIA did conform to the above
power-law relation V = cA1.286 at any time t with a sin-
gle best-fit c. The scale factor slowly decreased with time.
For example, Fig. 1a shows the power-law fits at t = 0 and
t = 500 years (R2

= 0.9), where the best-fit c values were
0.053± 0.001 and 0.47± 0.001 km3−2γ , respectively. This
implies a ∼ 11 % reduction in c for the ensemble over the
period of 500 years after the step change in ELA was ap-
plied. A time-dependent c is consistent with the theoretical
arguments of Bahr et al. (2015).

The slow and systematic decline in c for the ensemble
of shrinking glaciers simulated with the SIA model contra-
dicts the basic assumption of scaling models that c is time-
invariant. A decreasing c would mean Eq. (2) is violated,
with 1V

V
= γ 1A

A
+
1c
c

. Note that all three fractional changes
involved in this relation are negative. Therefore, for any given
|1A|, the corresponding |1V | is going to be larger in the SIA
model than that in a scaling model where 1c

c
is assumed to be

zero (Eq. 2). Even though the decline in c is only about 11 %,
it may be associated with a stronger low bias in the long-term
change predicted by scaling models. This is because a larger
volume change in SIA would lead to a thinner glacier, and a
corresponding surface-elevation feedback to mass balance is
likely to amplify the corresponding long-term mass loss over
time.

The dependence of the glacier-specific scale factor on the
mean slope is known (Bahr et al., 2015) and has been in-
corporated in modified scaling relations where volume is a
power-law function of both area and slope (e.g. Grinsted,
2013; Zekollari and Huybrechts, 2015). For the simulated
703 glaciers, the mean slope increases with time as the area
is lost preferentially from the gently sloping lower ablation
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Figure 1. (a) Glacier volume as a function of area for the 703 Himalayan glaciers simulated with SIA at t = 0 years (blue circles) and at
t = 500 years (red circles) is plotted along with the corresponding best-fit scaling relations (blue and red solid lines). The corresponding
fitted functions and R2 values are shown in blue and red, respectively. (b) The trajectories of the 703 glaciers in the V −A plane as simulated
with SIA (thick red lines) and scaling (thin blue lines) models. The inset is a zoomed-in version of the same plot, but with a linear scale.

zone. For example, the median slope of the 703 simulated
glaciers decreased from 0.41 at t = 0 to 0.37 at t = 500 years.
This∼ 10 % reduction in slope is expected to lead to a∼ 5 %
decline in c (Bahr et al., 2015). So, at least part of the time
dependence of c for transient glaciers in SIA simulation is
explained by the slope-dependence of c. However, there may
be other factors contributing to the decline in c for the tran-
sient glaciers as discussed below.

3.2.2 Area and volume response times

The theoretical predictions for glacier area and volume re-
sponse time (Eq. 11) worked rather well for the scaling
model results (Fig. 2c and d), with best-fit relations of
τV = (0.914± 0.002)τA with R2

= 0.99 and τA = (1.066±
0.008)τ ∗ with R2

= 0.80.
For SIA simulations, the data showed that τA > τV and

that the two response times were still proportional to each
other (Fig. 3c: τV = (0.687± 0.004)τA, with R2

= 0.94).
Also, τA was proportional to τ ∗ to a good approximation
(Fig. 3d: τA = (2.56± 0.04)τ ∗, with R2

= 0.53). Interest-
ingly, the value of the proportionality constant in the latter
relation as obtained from SIA was about 2.4 times larger
than the corresponding value obtained in the scaling model.
This underlines the relatively large underestimation of area
response time by the scaling model. Similarly, the volume
response time was about 1.8 times larger in the SIA simu-
lation than the corresponding scaling model value. This im-
plies that for a given ELA perturbation, the glacier response
is much faster in the scaling model compared to that in the
SIA model for the ensemble of 703 synthetic glaciers.

Apart from the overall underestimation of area and volume
response times by the scaling model, another serious limita-
tion of scaling models that emerges from the above analysis

is that here the area and volume response times are equal to
each other (Eq. 11 and Fig. 3c). In contrast, the SIA model
predicted τA ≈ 1.5τV . The ratio of the two response times
obtained from the 2-D SIA model here is generally consistent
with earlier results based on 1-D flow-line models (Oerle-
mans, 2001; Leysinger Vieli and Gudmundsson, 2004). The
equality of the two response times in the scaling model led to
a linear trajectory in the V −A plane for the transient glaciers
(Fig. 1b). In comparison, a relatively larger area response
time, together with slow initial changes in area (Figs. S4,
S10), led to curved V −A plane trajectories for individual
transient glaciers in the SIA model simulations. In particular,
a slowly changing area means the V −A trajectories bend
downward, causing c to decrease for the transient ensemble
(Fig. 1). Moreover, at the early stages of response, glaciers
simulated by a scaling model lose area much quicker than
those simulated by an SIA model (Fig. 1b). The associated
net mass-balance feedbacks then lead to a subdued long-term
volume response in the scaling model and a comparatively
stronger volume response in the SIA model, just as predicted
in Sect. 3.1.3.

3.2.3 The climate sensitivity of glacier area and volume

For the 703 glaciers simulated by the scaling model, the
fitted asymptotic fractional changes in area and volume,
or equivalently the corresponding (fractional) climate sen-
sitivities, were proportional to each other (Fig. 2a: 1V∞

V
=

(1.383±0.003)1A∞
A

, withR2
= 0.99). Here, the best-fit con-

stant of proportionality is close to but about 8 % larger than
γ = 1.286 as predicted by Eq. (2).

In contrast, the SIA simulations obtained 1V∞
V
= (1.93±

0.02)1A∞
A

, with R2
= 0.85 (Fig. 3a). In this case, the con-

stant of proportionality was ∼ 1.5γ , compared to the corre-
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Figure 2. Scaling model simulations of the 703 synthetic Himalayan glacier show that (a) the best-fit (fractional) climate sensitivities
of area and volume are proportional to each other, (b) the climate sensitivity of volume is proportional to α∗ ≡ βδEτ∗

γ h
, (c) the response

times associated with glacier area and volume are approximately equal, and (d) the volume response time is approximately equal to τ∗ ≡

−

(
bt
γ h
+β

)−1
. In all the above plots, the corresponding best-fit curves are shown with red lines. The fit parameters and R2 of the fits are

also given. These numerical trends are consistent with theoretical results derived in Sect. 3.1.

Figure 3. Results from the SIA simulations of the 703 synthetic Himalayan glacier show that (a) the climate sensitivities of area and volume
are proportional to each other, (b) the climate sensitivity of glacier volume is proportional to α∗ = βδEτ∗

γ h
, (c) the response times associated

with glaciers area and volume are proportional to each other, and (d) the volume response time is proportional to τ∗ =−
(
bt
γ h
+β

)−1
. The

fitted functions are shown with red lines. The corresponding fit parameters and R2 of the fits are also given. See text for detailed discussions.

sponding value of∼ γ in the scaling model. This larger value
of the ratio of the two climate sensitivities in the SIA model
is consistent with the observed decline in c for the transient
glaciers simulated with this model (Fig. 1). Note that no theo-
retical prediction is available for the ratio of asymptotic frac-
tional changes in volume and area in an SIA model.

Figure 2b shows that in the scaling model, cli-
mate sensitivity of glacier volume is proportional to α∗(
1V∞
V
= (0.655± 0.008)α∗, with R2

= 0.67
)

. This is in
line with Eq. (13), except that the constant of proportionality
is significantly less than γ . A similar proportionality between
the SIA-derived best-fit 1V∞

V
and α∗ is shown in Fig. 3b, with

1V∞
V
= (1.71± 0.03)α∗. However, in this case the fit is rela-

tively noisy with R2
= 0.48.

The above relations suggest that the climate sensitivity of
volume in the SIA simulation was about 2.6 times larger than
that in the scaling model. Similarly, the climate sensitivity
of glacier area obtained from the SIA model was also about
1.9 times larger than that obtained from the scaling model.

This trend of a relatively large (by about a factor of 2) under-
estimation of climate sensitivity of glacier volume and area
by the scaling model is consistent with the effects of a rela-
tively faster shrinkage of the ablation zone in the early stages
of the response as discussed in Sect. 3.1.3 and 3.2.2.

3.2.4 The total glacier loss estimated using the three
models

Starting with an initial volume (area) of 847 km3 (6865 km2),
the 703 glaciers simulated by SIA lost a total of 194 km3

(726 km2) of volume (area) in 500 years due to the step rise
in ELA by 50 m. As shown in Fig. 4, both the scaling and the
linear-response models underestimated the long-term change
in total area in this experiment, with estimated area changes
of 334 and 623 km2, respectively. The scaling-model predic-
tion for area change was only 46 % of the corresponding SIA
estimate, while the linear-response model estimate was 86 %
of that of SIA. Similar trends were seen for the magnitudes
of estimated volume change as well, with the respective scal-
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ing and linear-response model estimates being ∼ 31 % and
∼ 75 % of the corresponding SIA prediction (Fig. 4). We
confirmed that the nature of the above results does not de-
pend on the chosen cut-off of 50 % change that was used to
select the 703 glaciers (Fig. S6). In fact, with a smaller cut-
off, the linear-response model estimates were even closer to
the corresponding SIA estimates (Fig. S6). This is expected
as linear-response models are derived in the limit of small
fractional changes (Oerlemans, 2001).

The low bias in the long-term changes of glacier area and
volume computed with the scaling model is consistent with
the underestimation of corresponding climate sensitivities by
this model (Sect. 3.2.3). On shorter timescales of multiple
decades, an underestimation of response times by about a
factor of 2 (Sect. 3.2.2) partly compensates for a correspond-
ing underestimation of the climate sensitivities (Sect. 3.2.3),
and the deviations between the SIA and the scaling model are
not that prominent (Fig. 4). The biases in the scaling model
become clearer over multiple centuries (Fig. 4).

Note that, depending on the details of the scaling and SIA
models compared, or the set of glaciers simulated, the ac-
tual magnitude of the biases in scaling-model-derived cli-
mate sensitivity, response time, and long-term glacier change
could be different from these here. However, based on the
theoretical arguments and numerical evidence presented,
similar qualitative trends are expected if the above exercise
were to be repeated with a more detailed model and/or for a
more realistic set of glaciers.

The above results indicate the possibility of a negative bias
in scaling model estimates of future changes in mountain
glaciers and the corresponding contribution to sea-level rise.
As an example, let us consider a recent comparison (Hock
et al., 2019) of projected end-of-the-century sea-level rise
contribution of glaciers from six different models, with five
of them being based on some form of scaling. In that inter-
comparison study, the hypsometric-adjustment-based model
(Huss and Hock, 2015) consistently predicted the largest
fractional change of global glacier volume and area under
various climate scenarios (Table 3 of Hock et al., 2019). In
another recent comparison, similar trends are seen as far as
global-scale fractional volume loss by 2100 are concerned
(Figs. S17–S20 of Marzeion et al., 2020), although on a re-
gional scale there are differences. However, it is difficult to
draw a definite conclusion about any potential bias in scaling
models from the above-mentioned studies as there are wide
differences among the model runs in terms of the initial con-
ditions, climate forcing, and mass-balance parameterisations
used. An intercomparison of the models where the same set
of glaciers, with the same initial geometry and volume, are
simulated under the same mass-balance forcing – similar to
the strategy used in the present study – is necessary to iden-
tify possible biases in the existing scaling models.

The above results show that the linear-response model
outperformed the scaling model, producing a closer match
with the SIA results for the 703 synthetic glaciers from

the Gangetic Himalaya. However, this linear-response model
was calibrated using the SIA results for the same set of
glaciers. Therefore, this match is not enough to establish the
effectiveness of the linear-response model. To confirm the
improved performance of the linear-response model com-
pared to that of the scaling model, we applied both the mod-
els to simulate a different set of 164 glaciers in the western
Himalaya (Fig. S1). The best-fit linear-response properties
obtained from SIA simulation of the 703 central Himalayan
glaciers were first fitted to obtain four equations (Eqs. 14–
17) that relate the response properties to β,γ,h, and bt as
described before. The same equations were used to estimate
the response properties of each of the 164 western Himalayan
glaciers as required for the linear-response model simula-
tions. In this independent experiment, the linear-response
model again outperformed the scaling model in reproducing
the corresponding SIA results (Fig. S9). This confirms that
the linear-response model, along with Eqs. (14)–(17), can be
used for computing long-term glacier changes accurately.

3.3 The effects of glacier geometry

Can the biases in the scaling model described above be arte-
facts arising out of some peculiarities of the geometry of the
specific set of glaciers being simulated and not relevant in
general for scaling model computations of global-scale mass
loss of mountain glaciers? To rule out this possibility, we
simulated the response of a set of highly idealised synthetic
glaciers using both a flow-line model (Banerjee, 2017) and
the above scaling model (Radić et al., 2007). Note that this
flow-line model included sliding as well. All of these syn-
thetic glaciers have the same constant width, the same lin-
ear bedrock with a constant slope, and the same linear mass-
balance profile. Only the ELA was varied between glaciers.
Even for this highly idealised set of glaciers, the scaling
model estimates for the evolution of total area and volume
showed biases compared to those obtained from the flow-line
model (Fig. S9), and these biases were qualitatively very
similar to those depicted in Figs. 1 and 4. Again, the scal-
ing model predicted relatively smaller climate sensitivities, a
relatively faster area response, and a low bias in the long-
term changes, compared to corresponding flow-line-model
estimates (Fig. S9).

The above flow-line-model experiment provides an addi-
tional piece of evidence that the scaling-model biases dis-
cussed in this paper are, in general, expected to be present
in scaling model simulations of any set of glaciers. We re-
emphasise that even though the biases are expected to be
qualitatively similar to those presented here, the magnitudes
of the biases are likely to depend on the detailed characteris-
tics (related to geometry, flow, and mass-balance processes)
of the glaciers studied and the models used.
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Figure 4. The evolution of the total (a) volume and (b) area of the ensemble of 703 Himalayan glaciers simulated with three different
methods: SIA, scaling, and linear-response models. The uncertainty bands for the linear-response model results are also shown. See text for
details.

3.4 The linear-response model and its application to
real glaciers

As described above, we have used results from the 2-D
SIA model simulations of the response of 703 synthetic Hi-
malayan glaciers to a 50 m step change in ELA, to obtain the
following best-fit parameterisations of the glacier-response
properties (i.e., 1V∞

V
, 1A∞

A
,τA, and τV ).

1V∞

V
= (1.71± 0.03)α∗ (14)

1V∞

V
= (1.93± 0.02)

1A∞

A
(15)

τA = (2.56± 0.04)τ ∗ (16)
τV = (0.687± 0.004)τA (17)

Here as defined before, τ ∗ ≡−
(
bt
γ h
+β

)−1
, α∗ ≡ βδEτ∗

γ h
,

and δE = 50 m.
With the estimated glacier-specific response properties ob-

tained from Eqs. (14)–(17), it is possible to compute the evo-
lution glacier volume and area accurately for any glacier and
for any arbitrary ELA forcing function. For this, the follow-
ing general solution of the linear-response equation is used.

1V (t)=1V (0)e−t/τV +
1V∞

τV δE

t∫
0

1E(t ′)e−(t−t
′)/τV dt ′ (18)

Here 1E(t) is the given (arbitrary) ELA forcing function.
This equation simply states that any continuous ELA change
can be interpreted as the sum total of a series of discrete im-
pulses, and the corresponding net response is given by a su-
perposition of suitably delayed responses due to each of the
impulses. An analogous expression can be obtained for the

area evolution just by replacing all the V values in the above
equation with A values.

Note that the above formulation does not require the initial
state to be steady. As long as the glacier is close to a steady
state, a linear-response theory will be a good approxima-
tion (Oerlemans, 2001). However, an additional initial con-
dition, i.e., the value of1V (0), is needed to apply the linear-
response model to transient glaciers. 1V (0) is the initial de-
parture from a steady state and can be obtained from the ob-
served rate of volume loss (V̇ ) simply as 1V (0)=−τV V̇ .
Thus, the linear-response model can be used to evolve the
area and volume of a real set of glaciers for any arbitrary
time-dependent ELA forcing given the initial rates of change
of volume and area, initial thickness, mass-balance gradient,
and melt rate near glacier terminus.

Since the above parameterisation of linear-response prop-
erties (Eqs. 14–17) is derived from SIA simulations of an
ensemble of Himalayan glaciers, when applying them to any
other glacierised region in the world, it may be necessary to
simulate a few tens of glaciers (having a representative range
of area and slope) from that region using SIA first and con-
firming the accuracy of the above parameterisations.

Due to the noise present in the fits (Fig. 3), the linear-
response model predictions for an individual glacier would
have significant uncertainties. However, for a large set of
glaciers, the linear-response model provides accurate esti-
mates of the total area and volume evolution (Fig. 4, S6 and
S9).

3.5 Limitations of the present study

Because of the idealised descriptions of ice flow and the
mass-balance profile (as discussed in Sect. 2.2), and the ab-
sence of model calibration to match the available observed
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data of surface velocity, ice thickness, recent mass balance,
etc., the glaciers simulated here are not faithful copies of the
Himalayan ones. For a set of more realistic glaciers, the mag-
nitudes of the corresponding biases in scaling-model-derived
climate sensitivity and response time could be different from
those obtained here. However, based on the theoretical argu-
ments and numerical evidence presented, similar qualitative
trends are expected if the above exercise were to be repeated
for a more realistic model that includes higher-order mechan-
ics, a more realistic mass-balance model, and so on. Simi-
larly, the parameterisations for the linear-response properties
given here are obtained from 2-D simulations of 703 syn-
thetic Himalayan glaciers with some idealisations (Sect. 2.2)
and without any tuning of model parameters. The fit param-
eters in Eqs. (14)–(17) may be different for a different set of
glaciers. The parameterisations may also change if a more
detailed and calibrated model of the same glaciers is used.
However, the protocol used here to obtain the parameteri-
sation for linear-response properties can be directly applied
without any change for any set of glaciers and for any ice-
flow and/or mass-balance model. While applying the linear-
response model to any other region, it may be useful to ob-
tain the response properties of a few tens of representative
glaciers using flow-model simulations and check if any re-
calibration of the parameterisation as given in Eqs. (14)–(17)
is necessary.

4 Summary and conclusions

We performed a theoretical analysis of the response of moun-
tain glaciers within a time-independent scaling assumption.
In addition, the step response of 703 steady-state synthetic
Himalayan glaciers with realistic geometries and idealised
mass-balance profiles were simulated with three different
models: a scaling model, a 2-D SIA model, and a linear-
response model. The results obtained are as follows.

– Analytical expressions for climate sensitivity and re-
sponse time of glacier area and volume are derived
within a time-independent scaling assumption. These
expressions are validated using results from the scaling
model simulation of the ensemble of 703 glaciers.

– The response of the glaciers simulated with the 2-D
SIA model reveals that the initial steady states and the
transient states follow the volume–area scaling relation,
with the best-fit scale factor reducing slowly with time.

– For the ensemble of glaciers studied, the scaling model
obtains relatively smaller climate sensitivities of glacier
area and volume by a factor of about 1.9 and 2.6, respec-
tively, compared to those obtained from the SIA model.
This results in a low bias in the long-term changes pre-
dicted by the scaling model.

– For the ensemble of glaciers studied, the scaling model
underestimates volume (area) response time by a factor
of ∼ 1.8 (2.4) compared to the corresponding SIA esti-
mates.

– For the scaling model, τA ≈ τV , and 1V∞
V
≈ γ 1A∞

A
.

In contrast, for the SIA simulations, τA ≈ 1.5τV and
1V∞
V
≈ 1.5γ 1A∞

A
.

– The relatively larger ratio of the two response times in
the SIA simulations, along with an initial slow change in
the area, leads to curved V −A trajectories, a decreasing
c, and a relatively larger long-term volume loss for the
transient glaciers due to a corresponding mass-balance
feedback.

– A linear-response model based on the parameterisa-
tions of SIA-derived response properties helps reduce
the biases in the long-term glacier changes predicted by
the scaling model for the idealised central Himalayan
glaciers. The improved performance of this model is
validated on an independent set of 164 glaciers in the
western Himalaya.

Based on the theoretical arguments and numerical evi-
dence presented here, it is possible that qualitatively simi-
lar biases may generally be present in the long-term glacier
changes computed with scaling models. However, the actual
magnitudes of such biases in scaling models may be differ-
ent from those obtained here for a set of synthetic Himalayan
glaciers with idealised mass-balance profiles. Possible biases
in scaling models may, in turn, lead to a low bias in the cor-
responding estimates of the long-term sea-level rise contri-
bution from shrinking mountain glaciers. On a multidecadal
scale, a faster response due to shorter response times in the
scaling model can compensate for the effects of smaller cli-
mate sensitivities to some extent. However, the low biases
in scaling-model-derived changes in glacier area and volume
are likely to become apparent over longer timescales of mul-
tiple centuries. The linear-response model presented above
could potentially be useful in predicting the long-term global
glacier change and sea-level rise due to its accuracy and nu-
merical efficiency.
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