Articles | Volume 14, issue 9
The Cryosphere, 14, 3135–3153, 2020
https://doi.org/10.5194/tc-14-3135-2020
The Cryosphere, 14, 3135–3153, 2020
https://doi.org/10.5194/tc-14-3135-2020

Research article 16 Sep 2020

Research article | 16 Sep 2020

Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model

David Parkes and Hugues Goosse

Related authors

Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinean Coast rainfall
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-46,https://doi.org/10.5194/esd-2021-46, 2021
Preprint under review for ESD
Short summary
Reconstruction of daily snowfall accumulation at 5.5 km resolution over Dronning Maud Land, Antarctica, from 1850 to 2014 using an analog-based downscaling technique
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-12,https://doi.org/10.5194/essd-2021-12, 2021
Preprint under review for ESSD
Short summary
Can we reconstruct the formation of large open-ocean polynyas in the Southern Ocean using ice core records?
Hugues Goosse, Quentin Dalaiden, Marie G. P. Cavitte, and Liping Zhang
Clim. Past, 17, 111–131, https://doi.org/10.5194/cp-17-111-2021,https://doi.org/10.5194/cp-17-111-2021, 2021
Short summary
Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last 2 centuries
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020,https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Comparison of observed borehole temperatures in Antarctica with simulations using a forward model driven by climate model outputs covering the past millennium
Zhiqiang Lyu, Anais J. Orsi, and Hugues Goosse
Clim. Past, 16, 1411–1428, https://doi.org/10.5194/cp-16-1411-2020,https://doi.org/10.5194/cp-16-1411-2020, 2020
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021,https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary
Modelling steady states and the transient response of debris-covered glaciers
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021,https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Twentieth century global glacier mass change: an ensemble-based model reconstruction
Jan-Hendrik Malles and Ben Marzeion
The Cryosphere, 15, 3135–3157, https://doi.org/10.5194/tc-15-3135-2021,https://doi.org/10.5194/tc-15-3135-2021, 2021
Short summary
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020,https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020,https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary

Cited articles

Bahr, D., Meier, M., and Peckham, S.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 355–362, 1997. a
CGIAR-CSI: SRTM 90m Digital Elevation Data, available at: http://srtm.csi.cgiar.org/ (last access: 30 April 2020), 2019. a
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1137–1216, 2013. a
Cogley, J. G.: Geodetic and direct mass-balance measurements: comparison and joint analysis, Ann. Glaciol., 50, 96–100, https://doi.org/10.3189/172756409787769744, 2009. a
Daigle, D. and Kaufman, D.: Holocene climate inferred from glacier extent, lake sediment and tree rings at Goat Lake, Kenai Mountains, Alaska, USA, J. Quarternary Sci., 24, 33–45, https://doi.org/10.1002/jqs.1166, 2009. a
Download
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.