Articles | Volume 14, issue 7
https://doi.org/10.5194/tc-14-2515-2020
https://doi.org/10.5194/tc-14-2515-2020
Research article
 | 
31 Jul 2020
Research article |  | 31 Jul 2020

The contrasting response of outlet glaciers to interior and ocean forcing

John Erich Christian, Alexander A. Robel, Cristian Proistosescu, Gerard Roe, Michelle Koutnik, and Knut Christianson

Related authors

A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022,https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
On the attribution of industrial-era glacier mass loss to anthropogenic climate change
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021,https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024,https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Quantifying the Buttressing Contribution of Sea Ice to Crane Glacier
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1499,https://doi.org/10.5194/egusphere-2024-1499, 2024
Short summary
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, West Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
EGUsphere, https://doi.org/10.5194/egusphere-2024-1040,https://doi.org/10.5194/egusphere-2024-1040, 2024
Short summary
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024,https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023,https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary

Cited articles

Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P., Kaufman, D. S., Thirumalai, K., Martrat, B., Goosse, H., Phipps, S. J., Steig, E. J., Kilbourne, K. H., Saenger, C. P., Zinke, J., Leduc, G., Addison, J. A., Mortyn, P. G., Seidenkrantz, M. S., Sicre, M. A., Selvaraj, K., Filipsson, H. L., Neukom, R., Gergis, J., Curran, M. A., and Von Gunten, L.: Early onset of industrial-era warming across the oceans and continents, Nature, 536, 411–418, https://doi.org/10.1038/nature19082, 2016. a
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen, T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth, F., Weckström, K., and Ahlstrøm, A. P.: Rapid response of Helheim Glacier in Greenland to climate variability over the past century, Nat. Geosci., 5, 37–41, https://doi.org/10.1038/ngeo1349, 2012. a
Armour, K. C. and Roe, G. H.: Climate commitment in an uncertain world, Geophys. Res. Lett., 38, F02030, https://doi.org/10.1029/2010GL045850, 2011. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Abbas Khan, S.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a, b
Bindschadler, R. A., Nowicki, S., Abe-OUCHI, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), J. Glaciol., 59, 195–224, https://doi.org/10.3189/2013JoG12J125, 2013. a
Download
Short summary
We use simple, physics-based models to compare how marine-terminating glaciers respond to changes at their marine margin vs. inland surface melt. Initial glacier retreat is more rapid for ocean changes than for inland changes, but in both cases, glaciers will continue responding for millennia. We analyze several implications of these differing pathways of change. In particular, natural ocean variability must be better understood to correctly identify the anthropogenic role in glacier retreat.