Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-1937-2020
https://doi.org/10.5194/tc-14-1937-2020
Research article
 | 
15 Jun 2020
Research article |  | 15 Jun 2020

Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada

Ron R. Togunov, Natasha J. Klappstein, Nicholas J. Lunn, Andrew E. Derocher, and Marie Auger-Méthé

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Aerial observations of sea ice breakup by ship waves
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023,https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023,https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023,https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Inter-comparison and evaluation of Arctic sea ice type products
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023,https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
A simple model for daily basin-wide thermodynamic sea ice thickness growth retrieval
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022,https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary

Cited articles

Auger-Méthé, M., Lewis, M. A., and Derocher, A. E.: Home ranges in moving habitats: Polar bears and sea ice, Ecography, 39, 26–35, https://doi.org/10.1111/ecog.01260, 2016a. 
Auger-Méthé, M., Field, C., Albertsen, C. M., Derocher, A. E., Lewis, M. A., Jonsen, I. D., and Flemming, J. M.: State-space models' dirty little secrets: Even simple linear Gaussian models can have estimation problems, Sci. Rep., 6, 26677, https://doi.org/10.1038/srep26677, 2016b. 
Bai, X., Hu, H., Wang, J., Yu, Y., Cassano, E., and Maslanik, J.: Responses of surface heat flux, sea ice and ocean dynamics in the Chukchi-Beaufort sea to storm passages during winter 2006/2007: A numerical study, Deep.-Sea Res. Pt. I, 102, 101–117, https://doi.org/10.1016/j.dsr.2015.04.008, 2015. 
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. 
Breslow, N. E. and Clayton, D. G.: Approximate inference in generalized linear mixed models, J. Am. Stat. Assoc., 88, 9–25, https://doi.org/10.2307/2290687, 1993. 
Download
Short summary
Sea ice drift affects important geophysical and biological processes in the Arctic. Using the motion of dropped polar bear GPS collars, our study evaluated the accuracy of a popular satellite-based ice drift model in Hudson Bay. We observed that velocity was underestimated, particularly at higher speeds. Direction was unbiased, but it was less precise at lower speeds. These biases should be accounted for in climate and ecological research relying on accurate/absolute drift velocities.