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Abstract. Sea ice drift plays a central role in the Arctic cli-
mate and ecology through its effects on the ice cover, ther-
modynamics, and energetics of northern marine ecosystems.
Due to the challenges of accessing the Arctic, remote sensing
has been used to obtain large-scale longitudinal data. These
data are often associated with errors and biases that must be
considered when incorporated into research. However, ob-
taining reference data for validation is often prohibitively ex-
pensive or practically unfeasible. We used the motion of 20
passively drifting high-accuracy GPS telemetry collars orig-
inally deployed on polar bears, Ursus maritimus, in western
Hudson Bay, Canada, to validate a widely used sea ice drift
dataset produced by the National Snow and Ice Data Center
(NSIDC). Our results showed that the NSIDC model tended
to underestimate the horizontal and vertical (i.e., u and v)
components of drift. Consequently, the NSIDC model under-
estimated magnitude of drift, particularly at high ice speeds.
Modelled drift direction was unbiased; however, it was less
precise at lower drift speeds. Research using these drift data
should consider integrating these biases into their analyses,
particularly where absolute ground speed or direction is nec-
essary. Further investigation is required into the sources of
error, particularly in under-examined areas without in situ
data.

1 Introduction

Many research fields increasingly depend on remote sensing
to collect environmental data. The raw data from various re-
mote sensing sources are often combined using modelling
and interpolation techniques to create an accessible gridded
product (Reichle, 2008)– for example, the Hadley Centre
Sea Ice and Sea Surface Temperature dataset, which com-
bines data from numerous sources including active and pas-
sive satellite sensors, ice charts, and historic records (Titch-
ner and Rayner, 2014). However, measurement errors and
assimilation biases can lead to large inaccuracies (Reichle,
2008). If the degree of measurement error is greater than the
variability of the system being modelled, it could lead to spu-
rious results (Auger-Méthé et al., 2016b). Quantifying error
in remotely sensed data can be used to improve these data
products (Cressie et al., 2009) and is important for data as-
similation and the development of new products (Meier et
al., 2000; Sumata et al., 2014, 2015a). However, assessing
these errors is challenging, particularly in remote areas that
are difficult to ground truth.

Sea ice studies often rely on remotely sensed data due to
the remote, vast, and dynamic nature of the environment.
Sea ice drift is a fundamental contributor to the dynamism
of the Arctic ecosystem. Ice drift affects important thermo-
dynamic processes through the formation of polynyas and
leads (Marcq and Weiss, 2012), modulates ice deformation
rates (Bouillon and Rampal, 2015; Rampal et al., 2009), and
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can determine spatial distribution and configuration of dif-
ferent ice ages and thicknesses (Hutchings and Rigor, 2012;
Mahoney et al., 2019). It also drives the rate of sea ice export,
which affects ice extent throughout the Arctic (Rampal et
al., 2009). Therefore, ice drift is often considered in models
of ice cover characteristics, overall sea ice mass throughout
the Arctic, and global climate patterns (Hunke et al., 2010;
Kimura and Wakatsuchi, 2000; Kwok et al., 2013). In addi-
tion to geographic and environmental studies, ice drift has
received increased attention in ecological research. Ice drift
influences the distribution and biomass of plankton (Hop and
Pavlova, 2008; Kohlbach et al., 2017; Onodera et al., 2015;
Thorpe et al., 2007), as well as polar bear (Ursus maritimus)
behaviour and energetics (Auger-Méthé et al., 2016a; Durner
et al., 2017; Mauritzen et al., 2003). In addition to its effects
on geophysics and wildlife, ice drift is also important in de-
scribing transport of microplastics in the Arctic (Peeken et
al., 2018). Given its broad application, the accuracy of ice
drift data is critical when drawing geophysical and ecologi-
cal conclusions.

Several sources of ice drift data are available at variable
spatiotemporal resolutions (Sumata et al., 2014). Although
the data and models used vary between ice products, ice drift
estimates are generally estimated from combinations of buoy
data, weather forecast models, and satellite measurements.
These data sources vary in coverage, resolution, accuracy,
and sensitivity to environmental/meteorological conditions
and, therefore, result in products with variable sources of er-
ror (Mahoney et al., 2019; Sumata et al., 2014). In this pa-
per, we sought to quantify these errors in a widely employed
sea ice drift data product produced by the National Snow
and Ice Data Center (NSIDC; Boulder, CO): Polar Pathfinder
Daily 25 km EASE-Grid Sea Ice Motion Vectors (hereafter,
NSIDC drift; Tschudi et al., 2019, 2020). NSIDC drift esti-
mates are produced by assimilating drift obtained from sev-
eral satellite-based sensors, buoys, and modelled wind fields,
providing among the most extensive, high-resolution, and
complete spatial coverage. In addition, the NSIDC drift prod-
uct has the longest temporal coverage of any sea ice drift
products extending from 1978 to the present (Tschudi et al.,
2020).

Although research has examined the accuracy of older
versions of NSIDC drift (e.g., Ruslan, 2018; Schwegmann
et al., 2011; Sumata et al., 2014, 2015b), the latest ma-
jor release (version 4.0) has yet to be externally evaluated.
The NSIDC drift model integrates the movement of buoys
from the International Arctic Buoy Program (IABP; http:
//iabp.apl.washington.edu/, last access: 10 June 2020), and
the buoys are the highest weighted input source driving the
NSIDC model (Sumata et al., 2015a). Regions without such
in situ measurements are more susceptible to bias (Mahoney
et al., 2019; Sumata et al., 2015a; Tschudi et al., 2020) and
are therefore particularly important to evaluate.

There are two types of data that can be used to cross val-
idate ice drift: (1) other telemetry-based estimators includ-

ing moored Doppler-based velocity measures and other high-
resolution satellites (e.g., Advanced Very High Resolution
Radiometer, AVHRR; or synthetic aperture radar, SAR), and
(2) in situ drifters, including buoys, ships, and manned sta-
tions (Lavergne et al., 2016). Other satellite-based estimates
are associated with their own estimation errors, and Doppler-
based validation represents only errors in the area in which
they are moored (Rozman et al., 2011). Some studies used in
situ drifters (e.g., drifting research stations or buoys) as refer-
ence data; however, they are consequently limited in spatial
extent (Hwang, 2013; Rozman et al., 2011; Tschudi et al.,
2010). Since there are few sources of in situ sea ice drift data,
at least one study quantifying NSIDC drift accuracy used the
same IABP data that are integrated into the NSIDC model for
validation, which may underestimate bias (e.g., Sumata et al.,
2014). Further, IABP buoys have historically used ARGOS
location estimates, which have spatial errors up to tens of
kilometres and may be unsuitable for validation of drift dur-
ing the periods/areas in which they were deployed (Hwang,
2013).

In this paper, we evaluate the bias and precision (here-
after collectively referred to as accuracy) of NSIDC drift
data in Hudson Bay using an opportunistic and independent
source of sea ice drift validation data. We compared modelled
NSIDC drift to drifting GPS collars that were originally de-
ployed on polar bears but dropped onto sea ice. There has
been no study of the accuracy of any sea ice drift model in
Hudson Bay. In addition, the bay does not have any IABP
buoys, which drive the NSIDC model and its performance.
Our objectives were to quantify drift accuracy within three
domains: drift speed, drift direction, and the orthogonal (hor-
izontal, u; and vertical, v) components of the drift vectors.
We also explored whether accuracy varied with the underly-
ing drift speed, across months, or across years.

2 Methods

We fitted polar bears in western Hudson Bay, Canada, with
satellite-linked GPS collars (Telonics®, Mesa, Arizona) in
August and September of 2004–2015 (Fig. 1). Procedures
for animal capture and handling are described by Stirling
et al. (1989) and were approved annually by the University
of Alberta Animal Care and Use Committee for Biosciences
and by the Environment and Climate Change Canada West-
ern and Northern Region Animal Care Committee. Protocols
were in accordance with the Canadian Council on Animal
Care. Collars were programmed to obtain GPS fixes every
4 h. The locations obtained have a high accuracy, with er-
rors < 31 m (D’Eon et al., 2002). Although deployed with
the purpose of studying polar bear behaviour and space use,
some collars may slip off the bears, they may release early
due to premature failure of the release mechanism, or the
bear may die while the collars continue to transmit locations.
In these instances, the observed displacement of the collars
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Figure 1. Hudson Bay study area (enlarged), tracks of dropped col-
lars (black lines), and count of drift vectors (shaded cells, projected
in 25 km EASE-Grid North, EPSG: 3408). World borders dataset
obtained from Sandvik (2009).

represents the motion of sea ice. We identified drifting col-
lars either through activity sensors in the collars or by man-
ually comparing the observed collar displacement with sea
ice satellite imagery (Appendix A). To verify that manually
identified drifting collars were passively drifting and not on
active bears, we compared accuracy metrics for speed, di-
rection, and u and v (relative to the NSIDC drift projection,
EPSG: 3408) among activity sensor collars, manually iden-
tified passive collars, and collars on active bears. Detailed
methods and results of this comparison are presented in the
Appendix B.

We used the motion of the identified drifting collars (fol-
lowing date of inactivity/drop off; hereafter simply collars)
to quantify the accuracy and precision of NSIDC drift data.
The NSIDC product provides daily estimates of sea ice drift
derived from buoy data; National Centers for Environmen-
tal Prediction and National Center for Atmospheric Research
reanalysis wind vectors; and several satellite sensors includ-
ing AVHRR, the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E), Scanning Mul-
tichannel Microwave Radiometer (SMMR), and the Special
Sensor Microwave Imager/Sounder (SSMI/S; Tschudi et al.,
2019, 2020). To match the NSIDC product, collar locations
were projected into the 25 km EASE-Grid North (EPSG:
3408) projection used by NSIDC. NSIDC represents drift
as movement between 12:00 UTC of subsequent days. To
match the NSIDC temporal resolution, we subsampled the
collar locations to a 24 h resolution by retaining locations
from 13:00 UTC, the closest collar location to 12:00 UTC.
Next, we calculated drift vectors/components (i.e., speed, di-
rection, u, and v) and then removed any vectors from loca-
tions > 24 h apart. Next, we interpolated the NSIDC drift to
the first location of each collar drift vector using inverse dis-

tance weight (inverse distance power set to three and maxi-
mum distance of 50 km) to match the fix location.

The summary statistics chosen to quantify drift accuracy
can lead to incomplete or spurious conclusions (Volkov et
al., 2017). For example, root mean square and standard er-
rors convey the magnitude of the error but not the direction.
Correlation coefficients between model and reference data
describe model precision but not accuracy. Some studies in-
vestigated the accuracy of the orthogonal components of drift
(i.e., u and v) individually; however, this does not convey the
accuracy in speed and direction, which are emergent proper-
ties of both components. For example, if the biases of the or-
thogonal components are equal and scale proportionally, then
direction estimates remain accurate. Conversely, if the biases
are negatively correlated, they may partially cancel and result
in speed estimates more accurate than appear when examin-
ing the drift components independently. Thus, in addition to
the orthogonal u and v components of drift, we also quanti-
fied the accuracy of drift speed and direction.

We tested the following five key questions. (1) Are the
estimated model speeds significantly different from the col-
lar speeds? (2) Is the relative speed accuracy dependant on
the underlying drift speed being estimated? (3) Are the esti-
mated model directions significantly different from the col-
lar directions? (4) Is the direction accuracy dependant on
the underlying drift speed? And (5) do the relationships
between the model u (v) and collar u (v) components di-
verge significantly from each other? Because the data are
spatiotemporally autocorrelated, with subsequent days hav-
ing similar drift speeds and different collars sampling dif-
ferent regions of Hudson Bay, we could not use a simple
paired t test for the absolute speed bias (1). Instead, we used
an intercept-only generalized linear mixed model (GLMM;
with a Gaussian error distribution) with absolute speed bias
(SpeedNSIDC−Speedcollar) as the response, wherein a signif-
icant intercept represents a significant difference between the
model and the collar speeds. To account for repeat sampling
from different collars representing different regions, collar
identity was used as a random effect. To account for tem-
poral autocorrelation, we fit the model with a first-order au-
toregressive error process (AR1). For speed-dependant ac-
curacy of model speed (2), we defined relative speed accu-
racy as the quotient of NSIDC drift speed over collar speed,
SpeedNSIDC
Speedcollar

, with values > 1 representing overestimation and
values < 1 representing underestimation. This relative speed
accuracy was modelled as a function of log(Speedcollar) us-
ing GLMMs with gamma error distribution and a log-link
function. We log transformed Speedcollar because it is zero
bound and the relative difference in speed (and thus its rel-
ative effect on model accuracy) decays exponentially with
increasing values. We used the same random effect and AR1
structure as in (1). We assessed the accuracy of model di-
rection, DirectionNSIDC−Directioncollar, (3) using a Watson–
Williams test for homogeneity of means for circular data. Al-
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Figure 2. Autocorrelation function (ACF) for NSIDC linearized
direction accuracy, tan(|DirectionNSIDC−Directioncollar|/2). Blue
lines correspond to the 95 % confidence interval (CI) limits that rep-
resent significant autocorrelation.

though this test does not incorporate autocorrelation, the ab-
solute direction accuracy did not exhibit temporal autocorre-
lation (Fig. 2). For the speed-specific direction accuracy (4),
we defined relative direction accuracy as the linearized abso-
lute difference in direction, tan

(
|DirectionNSIDC−Directioncollar|

2

)
,

where 0 represents model unanimity and departure from 0
represents increasing error. This relative direction accuracy
was modelled as a function of log(Speedcollar) using the same
GLMM procedures used for testing speed-specific relative
speed accuracy (2). Any differences in speed or direction be-
tween the NSIDC and collar drift ultimately emerge from
the estimated u and v components of sea ice drift. We as-
sessed the relationship between the orthogonal components
of NSIDC and collar drift (5) using GLMM (with a Gaussian
error distribution), with model u (v) modelled as functions
of collar u (v), and the same random effect and AR1 struc-
ture as in (1), (2), and (4). All GLMMs were fit using pe-
nalized quasi-likelihood (GLMMPQL; Breslow and Clayton,
1993) using the glmmPQL function of the MASS package
(Venables and Ripley, 2002). Using GLMMPQL enabled us
to meet all our model criteria: non-linear models with ran-
dom effects and an autoregressive structure. As a broad met-
ric of goodness of fit, we used the GLMMPQL R2 metric de-
veloped by Jaeger et al. (2017) using the r2beta function in
the r2glmm package. All data processing and analyses were
conducted in R version 3.6.1 (R Core Team, 2019).

Figure 3. Interannual variation in correlation coefficients (r) be-
tween NSIDC drift and collar drift speed (red line), u component
(purple line), and v component (blue line). Shaded areas represent
the 95 % CI of the correlation coefficient. Numbers at the top repre-
sent the number of drift vectors compared in each year. Year 2013
is excluded due to insufficient data (n= 4).

3 Results

We identified 20 drifting collars with locations from
December–July of 2005–2015 (Figs. 1 and 3), with a mean of
520± 358 GPS fixes per collar (total = 10 409). The largest
number of identified collars in 1 year was in 2009 (n= 6).
The motion for these six collars is depicted in the Video
supplement (https://doi.org/10.5446/45186, Togunov et al.,
2020), which depicts the large degree of concurrence of drift
vectors across large spatial extent. After subsampling to a
daily resolution, we analyzed 1677 collar drift vectors. The
number of drift vectors ranged from 71 vectors in July to 304
vectors in March (mean = 210± 83 vectors; Fig. 4).

3.1 Accuracy of NSIDC drift speed

Mean NSIDC drift speed was 5.8± 4.5 km d−1 while
mean collar speed was 8.4± 7.1 km d−1; the difference in
speed SpeedNSIDC−Speedcollar was statistically significant
(GLMMPQL: intercept ±95 % confidence interval (CI) =
−3.0± 1.2 km d−1, degrees of freedom (df) = 1657, t value
=−4.8, p value < 0.0001; Fig. 5). NSIDC drift speeds
were slower than collar drift speeds in 63.1 % of the vec-
tors, and only 10.4 % of NSIDC drift speeds were within
±10 % of collar drift speeds (Fig. 5a). The discrepancy
in drift speed was more pronounced at higher collar drift
speeds, with a significant relationship between the quotient
( SpeedNSIDC

Speedcollar
) and collar speed (GLMMPQL: slope=−0.67, df

= 1656, t valueslope =−38.80, p valueslope < 0.0001, R2
=

0.53; Fig. 5b). Collar drift speeds < 4.5 km d−1 were over-
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Figure 4. Intra-annual variation in correlation coefficients (r) be-
tween NSIDC drift and collar drift speed (red line), u component
(purple line), and v component (blue line). Shaded areas represent
the 95 % CI of the correlation coefficient. Numbers at the top rep-
resent the number of drift vectors compared in each month. July is
excluded due to insufficient data (n= 71).

estimated by a median of 42 %, speeds between 4.5 and
9.0 km d−1 were underestimated by a median of 26 %, and
speeds > 9.0 km d−1 were underestimated by a median of
51 % (Fig. 5). There was intra-annual and inter-annual vari-
ation (based on 95 % CIs) in the correlation of NSIDC drift
speeds and collar drift speeds; however, there was no appar-
ent pattern (Figs. 3 and 4).

3.2 Accuracy of NSIDC drift direction

NSIDC drift directions were on average 2.6◦± 53.9◦ left
relative to the collar drift direction, although the mean dif-
ference was not significantly different from 0◦ (Watson–
Williams test: df1 = 1, df2 = 1676, F value= 0.003, p value
= 0.95; Figs. 6 and 7). Most (71.3 %) of the NSIDC drift
directions were within ±22.5◦ of the collar drift directions
(Fig. 7). NSIDC drift direction tended to be more accurate
at higher collar drift speeds, with a significant relationship
between relative direction accuracy and collar drift speeds
(GLMMPQL: slope =−0.83, df = 1656, t valueslope =

−7.52, p valueslope < 0.0001, R2
= 0.03; Fig. 7).

3.3 Accuracy of orthogonal NSIDC drift components

Mean collar drift u component was −0.9± 7.7 km d−1

compared to −0.7± 4.3 km d−1 for NSIDC drift u drift.
Mean collar drift v component was −1.1± 7.7 km d−1 com-
pared to −0.8± 4.5 km d−1 for NSIDC drift v compo-
nent drift. NSIDC and collar drift components were sig-
nificantly related in both the u component (GLMMPQL:
slope ±95 % CI = 0.38± 0.02, df = 1656, t valueslope =

37.58, p valueslope < 0.0001, R2
= 0.46; Fig. 8) and the v

component (GLMMPQL: slope ±95 % CI = 0.40± 0.02, df
= 1656, t valueslope = 37.54, p valueslope < 0.0001, R2

=

0.52; Fig. 8). Although the components of NSIDC drift and
collar drift were significantly correlated, the slopes of the re-
gression were significantly underestimated (indicated by the
slope estimate and 95 % CI being < 1).

4 Discussion

Using drifting collars as reference data for validation, we
identified biases in the estimated speed and direction of the
NSIDC sea ice drift model. NSIDC drift speeds tended to be
underestimated, although drift direction was relatively accu-
rate. This is due to the underestimation of u and v compo-
nents, which showed a similar magnitude in their bias. The
biases in speed and direction were related to the underlying
drift speed as measured by the collars. NSIDC drift speeds
tended to overestimate slow collar drift (< 4.5 km h−1) and
underestimate high collar drift (> 4.5 km h−1). This pattern
is likely an effect of estimating a zero-bound variable and
is consistent with other satellite-based sea ice drift products
(Johansson and Berg, 2016; Mahoney et al., 2019; Rozman
et al., 2011; Sumata et al., 2014). As drift speeds approach
0 km d−1, the probability of overestimation approaches 1,
and as drift speeds increase, the range of values that are be-
low the drift speed (i.e., underestimates) increases. Although
the bias is mathematically inevitable to some degree, the
magnitude of the bias is not fixed, and our results show that
the error can be high, with drift speeds underestimated by
a median of 22.9 % (1.4 km d−1). This is similar to the drift
bias observed by Durner et al. (2017) in the Beaufort and
Chukchi seas, wherein mean daily model speed was under-
estimated by a mean of 28.0 % (2.25 km d−1). These biases
are small relative to the 25 km resolution of the satellite in-
put data; however, in some analyses, the bias would com-
pound over time. For example, cumulative/total daily drift
calculated for 7 months (corresponding to the months in
which we obtained drift data) would be underestimated by
> 295 km. Drift direction accuracy increased at higher collar
drift speeds. This is probably because magnitude and uni-
formity of sea ice displacement increase with drift speed,
and this is more likely to be detected by NSIDC’s feature-
matching algorithm (based on maximum cross correlation;
Tschudi et al., 2019).

Our estimates of drift speed bias are greater than estimated
in studies of NSIDC and other drift products (Durner et al.,
2017; Hwang, 2013; Johansson and Berg, 2016; Lavergne,
2016; Schwegmann et al., 2011; Sumata et al., 2014). How-
ever, the Hudson Bay system is different from areas where
drift accuracy has been studied. First, Hudson Bay has a
smaller area-to-shoreline ratio due to its smaller size com-
pared to the rest of the Arctic Ocean (excluding the Canadian
Arctic Archipelago), which confounds satellite and wind-
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Figure 5. Accuracy of NSIDC drift speed represented by (a) a histogram and density plot of the absolute accuracy (SpeedNSIDC−Speedcollar)
and (b) GLMMPQL of relative accuracy (SpeedNSIDC/Speedcollar) as a function log-transformed collar speed (presented on log–log scale;
the blue line is the GLMPQL prediction of the mean with the shaded 95 % CI). In both (a) and (b), data points are separated into three groups
(red, purple, and blue) based on collar speed to convey speed-specific variability in accuracy. Black lines represent 1 : 1 unanimity between
NSIDC and collar drift speeds.

Figure 6. Accuracy of NSIDC drift direction represented by (a) a circular histogram and density plot of the absolute accuracy
(DirectionNSIDC−Directioncollar) and (b) GLMMPQL of relative accuracy (tan(|DirectionNSIDC−Directioncollar|/2)) as a function of log-
transformed collar speed (presented on a log–log scale, with a zero value representing 1 : 1 unanimity); the blue line in (b) represents the
GLMMPQL prediction of the mean with the shaded area representing the 95 % CI. Data points are separated into three groups (red, purple,
and blue) based on collar speed to convey speed-specific variability in accuracy.

based drift estimation (Thorndike and Colony, 1982; Tschudi
et al., 2020). Satellite-based tracking relies on a feature-
matching algorithm and cannot resolve velocities near the
shore (Heil et al., 2001; Meier et al., 2000; Tschudi et al.,
2020). While currently NCEP wind is weighted half as much
as buoy or satellite data, Tschudi et al. (2020) noted that
wind-based estimates are comparable to satellite estimates
and may need to be given a higher weight. Although giv-
ing wind estimate higher weight may improve drift estimates
in Hudson Bay, it may still result in speed underestimation.
Wind-based drift estimates assume a 20◦ relationship with
direction and a 1 % relationship with speed, although this
speed relationship may actually be higher (up to 3 %; Bai et
al., 2015; Rabinovich et al., 2007). The effect of wind on drift
also varies depending on proximity to shore and the orienta-

tion of wind relative to the shoreline. Near the coast, inter-
nal ice stress/forces can exceed those of wind and currents,
with the effects extending up to 400 km (Fissel and Tang,
1991; Overland and Pease, 1988; Rabinovich et al., 2007;
Thorndike and Colony, 1982). More complex regression-
based models that account for proximity and orientation of
shorelines have been shown to improve wind-based drift esti-
mates (Rabinovich et al., 2007). Second, the bay is a seasonal
system, completely melting in summer and reaching nearly
100 % cover in winter (Danielson, 1971; Saucier et al., 2004;
Stewart and Barber, 2010). Consequently, sea ice in Hudson
Bay lacks multi-year ice, and the ice is younger and generally
thinner, with extensive periods of low concentration, factors
which both decrease accuracy of modelled ice drift (Durner
et al., 2017; Mahoney et al., 2019; Sumata et al., 2014). At
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Figure 7. Difference between collar drift and NSIDC drift for the
u (x axis) and v (y axis) components. Curves represent density of
differences, and the red dot represents the mean difference of u and
v components.

low ice concentrations, satellites sensors are more likely not
to detect sea ice (Castro de la Guardia et al., 2017; Tivy et al.,
2011). The formation of new sea ice during freeze-up and the
melt ponds that form during break-up both confound estima-
tion of drift (Meier et al., 2000; Tschudi et al., 2020; Willmes
et al., 2009). Third, there are no IABP buoys in Hudson Bay
to contribute data to the NSIDC drift model, another factor
associated with poorer model performance (Mahoney et al.,
2019; Tschudi et al., 2020). Earlier versions of NSIDC drift
products (see Tschudi et al., 2016) effectively limited the
influence of buoys to ∼ 350 km, which introduced artefacts
around buoy locations (Szanyi et al., 2016). Changes to the
algorithm in version 4 of NSIDC drift eliminated the artefacts
and increased accuracy within the Arctic Ocean (Tschudi et
al., 2020); however, these changes would not have improved
drift estimates in regions without buoy data, including Hud-
son Bay. Last, the EASE-Grid projection is polar azimuthal
and induces meridional compression and zonal stretching,
which further biases drift estimation. The effect of this distor-
tion is that north–south (east–west) drift is more likely to be
underestimated (overestimated), and direction estimates will
be biased toward the east–west axis. This bias is amplified as
you approach the equatorial limits of the dataset and is par-
ticularly important if groundspeed is required. Hudson Bay is
the furthest body of water from the poles where NSIDC drift
is estimated and would therefore experience the greatest bias
due to projection. In summary, our observed speed underes-
timation may be explained by the challenging topography of
Hudson Bay for satellite and wind-based drift estimates, un-
derestimation of wind’s impact on ice motion, small weight

given to the wind input data, lack of buoy data, and projection
biases.

A common limitation of these types of studies is
the reliance on interpolation. Bilinear, or inverse-distance-
weighted, interpolation yields estimates that tend towards the
mean and precludes obtaining outermost estimates (Schweg-
mann et al., 2011). In addition, interpolation within skewed
distributions is likely to yield spurious estimates. For exam-
ple, in right-skewed datasets (e.g., zero-bound drift speed),
outliers are more likely greater than the mean, and inverse-
distance averaging is more likely to be an overestimate. Nev-
ertheless, there is no reason to believe these biases would be
greater than those of other sea ice drift validation studies that
used linear interpolation to match satellite with in situ-based
estimates (Lavergne, 2016; Schwegmann et al., 2011).

The drift biases we report are limited by availability of
telemetry collar data, and we cannot definitively extrapo-
late our accuracy estimates beyond this spatiotemporal ex-
tent. Nevertheless, many of these biases have been reported
in research of NSIDC and other satellite-based sea ice drift
estimates (Heil et al., 2001; Karlsson, 2016; Lavergne, 2016;
Linow et al., 2015; Rozman et al., 2011; Schwegmann et al.,
2011; Sumata et al., 2014, 2015b, 2015a; Szanyi et al., 2016).
Areas with similar characteristics to Hudson Bay may show
similar biases in the estimated speed and direction of drift.
This includes other seasonal systems (e.g., Baffin Bay) and
those with slower drift (e.g., Kara and Laptev seas) or with-
out IABP buoys (see IABP, 2020, and Rampal et al., 2009,
for coverage). Further, we observed the relative degree of
bias increases with speed. If such scaling in bias exists in
other areas, then the magnitude of underestimation may be
greater in areas with faster speeds (e.g., Chukchi Sea).

Assuming the overall NSIDC drift accuracy is consistent
over time, these data are likely well suited for addressing
questions where the relative speed or direction are sufficient,
for example longitudinal analyses such as climate-induced
changes in drift speed (e.g., Kwok et al., 2013; Klappstein
et al., 2020). Still, a large error may obscure underlying
trends. We suggest cautious application of the NSIDC drift
data where the absolute speed or direction is critical – for ex-
ample, calculation of animal energetics (e.g., Durner et al.,
2017; Klappstein et al., 2020), home ranges (e.g., Auger-
Méthé et al., 2016a), voluntary movement (e.g., Togunov et
al., 2017, 2018), and predicting/retrodicting distribution of
drifting matter (Kohlbach et al., 2017; Peeken et al., 2018;
Thorpe et al., 2007; Tschudi et al., 2010). The degree of er-
ror/bias that is permissible is research specific. Generally, to
be able to correctly account for measurement error, it has to
be smaller than the natural stochasticity of the system be-
ing studied (Auger-Méthé et al., 2016b). Particular attention
to error/bias should be given in regions without IABP buoy
data or where bias is unquantified.
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Figure 8. GLMMPQL (family: Gaussian) regression of the u (a) and v (b) components of NSIDC drift vector versus collar drift. Black lines
represent a 1 : 1 relationship between NSIDC and collar drift components; the blue lines represent the lines of best fit with the shaded areas
representing the 95 % CI of the mean.

5 Conclusions

This study provides the first error estimates of any sea ice
drift model in Hudson Bay. Using passively drifting teleme-
try collars, we quantified the accuracy and precision of Po-
lar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vec-
tors, Version 4. Both u and v components of NSIDC drift
along with the resultant speed tended to systematically un-
derestimate true drift speed, a pattern exacerbated at higher
speeds. The direction showed no systematic bias; however,
directional precision decreased at lower speeds. We sug-
gest that any research requiring absolute values for drift
speed/direction should account for error/bias of drift in the
study design and/or test the sensitivity of the results to these
biases (Cressie et al., 2009).

Although our collar GPS data were collected with the in-
tent of studying polar bear ecology, we believe it and other
forms of animal-borne telemetry can be of great utility in ad-
vancing environmental modelling. For example, polar bear
telemetry has been used to validate sea ice drift in the Beau-
fort and Chukchi seas (Durner et al., 2017; Tschudi et al.,
2010) and to assess accuracy of sea ice concentration data
(Castro de la Guardia et al., 2017), and seabird tracking
has been used to estimate ocean currents and wind veloci-
ties (Goto et al., 2017; Yoda et al., 2014; Yonehara et al.,
2016). In addition to being useful for model validation, these
types of data can be incorporated into environmental mod-
els as additional data streams, providing insight into areas
that are more difficult to measure (Harcourt et al., 2019;
Miyazawa et al., 2015). To help improve modelled drift
data, we have made the position data of our drifting collars
public https://doi.org/10.7939/dvn/kuiz7g (Derocher, 2020).
The data can also be used to identify error/bias associated
with different locations, periods, or environmental conditions
(e.g., ice thickness, ice concentration, and cloud cover) in
which models can be improved (e.g., Miyazawa et al., 2015).
Our study provides evidence of modelled ice drift bias in

Hudson Bay, where a lack of Arctic buoys makes this type
of study difficult. Ultimately, these findings (in combination
with our public dataset and that of other drifting tag data;
Durner et al., 2017; Øigård et al., 2010; Vacquie-Garcia et
al., 2017) can be a good resource for quantifying and validat-
ing the accuracy of other and/or future ice drift products.
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Appendix A: Drifting collar identification

Collars deployed since 2011 were equipped with activity sen-
sors that are triggered following an extended period of inac-
tivity. These collars were considered passively drifting if the
activity sensor turned on and stayed until the end of trans-
missions. Collars deployed before 2011 had to be identified
manually in two stages.

First, GPS location data were annotated with sea ice mo-
tion vectors from NSIDC’s Polar Pathfinder Daily 25 km
EASE-Grid Sea Ice Motion Vectors, Version 3 (http://nsidc.
org/data/nsidc-0116, last access: 10 June 2020). Daily drift
estimates were spatiotemporally interpolated to match the lo-
cation and time of GPS fixes – it was assumed that the ice
motion data reflected average drift at noon of each day. For
all 4 h GPS fixes, voluntary bear movement was estimated
by subtracting the component of ice drift from the GPS dis-
placement. This estimate of voluntary movement was plot-
ted against time for each collar. Collars were suspected to be
drifting if there was a sudden and sustained drop in move-
ment speed (e.g., Fig. A1 versus Fig. A2). To confirm that
the collars are indeed drifting, the displacement of these sus-
pect collars had to be confirmed to reflect the actual sea ice
drift.

Actual sea ice drift was derived from NASA’s Earth Ob-
serving System Data and Information System (EOSDIS)
satellite imagery (https://earthdata.nasa.gov/about, last ac-
cess: 10 June 2020). First, the projection and scale of EOS-
DIS and collar locations had to be matched. The EOSDIS
Worldview web interface (https://worldview.earthdata.nasa.
gov/, last access: 10 June 2020) projection was set to “Arc-
tic” (WGS 84/NSIDC Sea Ice Polar Stereographic North pro-
jection; EPSG: 3413), rotated −69◦, and maximally zoomed
in. Collar locations were plotted in QGIS version 2.16.3;
the projection was matched to EOSDIS (EPSG: 3413) and
scaled in QGIS to 1 : 480 000 (though the realized scale was
∼ 1 : 1 330 000 on the 13.3 in. computer at a 2560×1600 res-
olution).

Next, sea ice drift was estimated at a subset of loca-
tions for each suspected drifting collar using the follow-
ing procedure. First, the view in QGIS was centred on
GPS locations of a probably drifting collar where ice drift
would be approximated, and the view in EOSDIS World-
view was matched. Second, we identified periods where the
satellite imagery was relatively unobscured by clouds for
at least 2 d and visually tracking ice floes would be possi-
ble. Third, a collar location representing the first location
of a displacement vector (hereafter, first-day collar loca-
tion) was marked using the screen annotation software Anno-
tatePro (https://web.archive.org/web/20190701171427/http:
//www.annotatepro.com:80/, last access: 31 July 2018).
Fourth, we identified unique sea ice features that could be
tracked over both days. Unique ice features were mainly dis-
tinctive edges and corners of ice floes and fractures. Fifth, us-
ing AnnotatePro, we marked where an ice floe was on the day

Figure A1. Example of estimated voluntary movement (step length
in m s−1) over time of a collar that is on a living bear.

of the collar location (hereafter, first-day ice location), and
another point was marked where that same ice floe was on
the following day (hereafter, second-day ice location). Sixth,
both marks were selected using selection tool in AnnotatePro
and moved such that the first-day ice location overlapped the
first-day collar location. The second-day ice location repre-
sented where the collar would be located on the following
day had the bear not moved. If the collar location was on an
identified ice floe, only that floe was tracked. If the collar lo-
cation was not on an identified floe, up to five additional floes
around the collar location were identified and marked to at-
tain an approximation of drift at the collar location. Seventh,
the distance between second-day ice location and the second-
day collar location was calculated using the “measure line”
tool in QGIS. If several ice floes were marked and tracked,
then the distance was measured from the second-day collar
location to the approximate centre of all the second-day ice
floe locations. At the operating scale being used, sea ice drift
was relatively uniform, and there was very high consistency
in drift among ice floes.

Collars were assumed to be passively drifting collars if
the mean of at least four consecutive distance estimates
(hereafter, distance estimate) was < 2 km (hereafter, distance
threshold). At the maximum resolution permitted in EOS-
DIS, the 2 km distance threshold corresponded to ∼ 1.5 mm
on screen. If the distance estimate was greater than the dis-
tance threshold, the collar was assumed to be on a live bear
and not a drifting collar.

The EOSDIS imagery used was taken during daylight
hours, so sea ice drift was estimated (as much as possible)
for collar locations at 17:00 and 21:00 UTC, generally corre-
sponding to midday in Hudson Bay. For each suspect drift-
ing collar, sea ice drift was first estimated for the last days
of collar locations; if the distance estimate was greater than
the distance threshold (i.e., indicating a live bear), all prior
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Figure A2. Example of estimated voluntary movement (step length
in m s−1) over time of a suspect passive collar.

locations must also have been on a live bear. If the distance
estimates were less than the distance threshold the collar was
assumed to be drifting, then drift was estimated iteratively
∼ 30 d into the past until the distance estimate indicated a
live bear. Next, from the last date assumed to be drifting, sea
ice drift was estimated iteratively∼ 7 d into the past until the
mean distance estimate indicated a live bear. Finally, from the
last drifting collar date, we examined prior days sequentially
until the distance estimate indicated a live bear. The follow-
ing day was determined to be the date when the collar either
dropped off the bear or the bear died.

For certain days, ice drift estimation was either very poor
or not possible. Confounding factors included heavy cloud
cover, blurry satellite imagery, small floes that were indis-
tinguishable and not trackable (particularly common during
freeze-up and break-up), consolidated ice with no trackable
features, or days with extreme fracturing of ice floes beyond
recognition. For these periods, certain modifications to the
described protocols were permitted. For example, if cloud-
free days were separated by up to two clouded days and sea
ice drift could be estimated across that period, this was per-
mitted. If many of the drift estimates were poor, researcher
discretion was permitted to increase the drifting collar thresh-
old from 2 km. During periods with extensively poor ice drift
estimation, if four sequential drift estimates spanned beyond
a week, it was permitted to average fewer than four estimates.

Appendix B: Drifting collar validation

To lend additional support that manually identified collars
were indeed not on active bears, we compared metrics of
speed, direction, and u and v component accuracy calculated
for manually identified collars, activity-sensor-identified col-
lars, and active collars. First, we subset the active collars to a
24 h resolution by filtering only fixes obtained at 13:00 UTC.
Second, we calculated the displacement vectors (speed, di-
rection, and u and v components; calculated in the EASE-
Grid North projection, EPSG: 3408) between successive
days, and then we filtered any vectors representing displace-
ment over > 24 h. Third, we subset the active collar vector
data to the same number of locations as the drifting col-
lars (n= 1677) and only in the years (2005, 2008–2010, and
2013–2015) and months (December–June). These data were
then compared to drifting collars identified manually and us-
ing the activity sensor.

The metrics of comparison were speed accuracy
(SpeedNSIDC−Speedcollar; Fig. B1a) and direction ac-
curacy (DirectionNSIDC−Directioncollar; Fig. B1b). We also
tested the correlation in speed, direction, u component, and
v component between NSIDC drift estimates and collar
displacement vectors (Figs. B1c and B2). For speed, we
calculated the Pearson correlation coefficient (Fig. B1c).
For direction, we calculated the circular Pearson correlation
coefficient (±95 % CI) using the “cor.circular” function in
the “circular” package in R. We used bootstrapping with
1000 replicates to calculate the 95 % CI for this circular
correlation (Fig. B1c). As an additional metric of directional
accuracy, we estimated the concentration parameter (kappa
±95 % CI) on the difference between NSIDC drift and collar
displacement vectors (Fig. B1c). Last, we fit a glmmPQL
function (family: Gaussian) with the NSIDC drift u and v

components as functions of u and v components of active,
manually identified, and activity-sensor-identified collars
(Fig. B1).

There were no significant differences between manually
identified drifting collars (n= 13) and collars identified us-
ing activity sensor (n= 7) in accuracy metrics of speed, di-
rectional, or u and v components. However, both manually
and activity-sensor-identified collars were consistently sig-
nificantly different from collars on active bears with regard
to the same accuracy metrics (Figs. B1 and B2). All results
exhibit a significantly weaker relationship between NSIDC
drift and displacement of active collars compared to either
passively drifting collars.

The motion for six manually identified collars is depicted
in the Video supplement (https://doi.org/10.5446/45186, To-
gunov et al., 2020). This video depicts the large degree of
concurrence of drift vectors across a large spatial extent and
further supports that the manually identified collars are in
fact passively drifting.
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Figure B1. Comparison of speed and direction metrics of collars believed to be on active bears (red), manually identified drifting col-
lars (dark blue), and activity-sensor-identified drifting collars (light blue). Metrics presented are density plot of the difference in speed,
(SpeedNSIDC−Speedcollar; a), density plot of difference in direction (DirectionNSIDC−Directioncollar; b), Pearson’s correlation coeffi-
cients of speed (SpeedNSIDC ∼ Speedcollar; c, left) and direction (DirectionNSIDC ∼ Directioncollar; c, middle), and estimates of angular
concentration (kappa) in the difference in direction (c, right). Error bars in (c) represent the 95 % CI of the mean.

Figure B2. GLMMPQL regression of the u (a) and v (b) components of the NSIDC drift vector versus collar drift among collars believed
to be on active bears (red), manually identified drifting collars (dark blue), and activity-sensor-identified drifting collars (light blue). Black
lines represent a 1 : 1 relationship between NSIDC and collar drift components; shaded areas represent the 95 % CI of the mean.
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Data availability. The Polar Pathfinder Daily 25 km EASE-Grid
Sea Ice Motion Vectors (version 4) dataset is available at https:
//nsidc.org/data/nsidc-0116/versions/4 (Tschudi et al., 2019). The
location data of the passively drifting collars is available at
https://doi.org/10.7939/dvn/kuiz7g (Derocher, 2020).

Video supplement. The animation depicting the motion of five
dropped telemetry collars in Hudson Bay, Canada, is available at
https://doi.org/10.5446/45186 (Togunov et al., 2020).
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