Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
TC | Articles | Volume 14, issue 5
The Cryosphere, 14, 1555–1577, 2020
https://doi.org/10.5194/tc-14-1555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 14, 1555–1577, 2020
https://doi.org/10.5194/tc-14-1555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 May 2020

Research article | 13 May 2020

Incorporating moisture content in surface energy balance modeling of a debris-covered glacier

Alexandra Giese et al.

Related authors

The response of supraglacial debris to elevated, high frequencyGPR: Volumetric scatter and interfacial dielectric contrastsinterpreted from field and experimental studies
Alexandra Giese, Steven Arcone, Robert Hawley, Gabriel Lewis, and Patrick Wagnon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-60,https://doi.org/10.5194/tc-2019-60, 2019
Preprint withdrawn
Short summary

Related subject area

Discipline: Glaciers | Subject: Energy Balance Obs/Modelling
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020,https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier
Eleanor A. Bash and Brian J. Moorman
The Cryosphere, 14, 549–563, https://doi.org/10.5194/tc-14-549-2020,https://doi.org/10.5194/tc-14-549-2020, 2020
Short summary
Surface energy fluxes on Chilean glaciers: measurements and models
Marius Schaefer, Duilio Fonseca, David Farias-Barahona, and Gino Casassa
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-51,https://doi.org/10.5194/tc-2019-51, 2019
Revised manuscript accepted for TC
Short summary
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018,https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary

Cited articles

Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, AL., Favier, V., Mandal, A., and Pottakkal, J. G.: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements, The Cryosphere, 8, 2195–2217, https://doi.org/10.5194/tc-8-2195-2014, 2014. a
Blum, W. E., Nortcliff, S., and Schad, P.: Essentials of soil science: soil formation, functions, use and classification (world reference base), Borntraeger, 2018. a, b
Boone, A. and Etchevers, P.: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an Alpine site, J. Hydrometeorol., 2, 374–394, 2001. a, b
Boone, A., Calvet, J.-C., and Noilhan, J.: Inclusion of a third soil layer in a land surface scheme using the force–restore method, J. Appl. Meteorol., 38, 1611–1630, 1999. a
Boone, A., Masson, V., Meyers, T., and Noilhan, J.: The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme, J. Appl. Meteorol., 39, 1544–1569, 2000. a, b, c, d
Publications Copernicus
Download
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be...
Citation