Articles | Volume 14, issue 3
https://doi.org/10.5194/tc-14-1051-2020
https://doi.org/10.5194/tc-14-1051-2020
Research article
 | 
20 Mar 2020
Research article |  | 20 Mar 2020

Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry

Andrea Walter, Martin P. Lüthi, and Andreas Vieli

Related authors

Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021,https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019,https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
A topographically controlled tipping point for complete Greenland ice sheet melt
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025,https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024,https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals
Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman
The Cryosphere, 18, 5673–5683, https://doi.org/10.5194/tc-18-5673-2024,https://doi.org/10.5194/tc-18-5673-2024, 2024
Short summary
The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024,https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024,https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary

Cited articles

Alstott, J., Bullmore, E., and Plenz, D.: powerlaw. A Python package for analysis of heavy-tailed distributions, PloS ONE, 9, e85777, https://doi.org/10.1371/journal.pone.0085777, 2014. 
Amundson, J. M., Clinton, J. F., Fahnestock, M., Truffer, M., Lüthi, M. P., and Motyka, R. J.: Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland, Ann. Glaciol., 53, 79–84, https://doi.org/10.3189/2012/AoG60A200, 2012. 
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S., Bartholomaus, T. C., Liu, Yan, Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/NGEO2290, 2014. 
Bartholomaus, T. C., Larsen, Ch. F., O'Neel, S., and West, M. E.: Calving seismicity from iceberg-sea surface interactions, J. Geophys. Res., 117, F04029, https://doi.org/10.1029/2012JF002513, 2012. 
Bartholomaus, T. C., Larsen, Ch. F., West, M. E., O'Neel, S., Pettit, E. C., and Truffer, M.: Tidal and seasonal variations in calving flux observed with passive seismology, J. Geophys. Res.-Earth Surf., 120, 2318–2337, https://doi.org/10.1002/2015JF003641, 2015. 
Download
Short summary
Glacier calving plays a key role in the dynamic mass loss of ocean-terminating glaciers in Greenland. Source areas and volumes of 900 individual calving events were analysed for size and timing related to environmental forcings. We found that calving volume distribution and style vary along the calving front and are controlled by the water depth and front geometry. We suggest that in deep water both oceanic melt and subaquatic calving contribute substantially to the frontal mass loss.