Articles | Volume 13, issue 1
The Cryosphere, 13, 97–111, 2019
https://doi.org/10.5194/tc-13-97-2019
The Cryosphere, 13, 97–111, 2019
https://doi.org/10.5194/tc-13-97-2019
Research article
11 Jan 2019
Research article | 11 Jan 2019

Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada)

Stephanie Coulombe et al.

Related authors

Thermokarst lakes formed in buried glacier ice: Observations from Bylot Island, eastern Canadian Arctic
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Denis Lacelle, and Isabelle Laurion
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-302,https://doi.org/10.5194/tc-2021-302, 2021
Revised manuscript under review for TC
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
Seismic physics-based characterization of permafrost sites using surface waves
Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby
The Cryosphere, 16, 1157–1180, https://doi.org/10.5194/tc-16-1157-2022,https://doi.org/10.5194/tc-16-1157-2022, 2022
Short summary
Long term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-329,https://doi.org/10.5194/tc-2021-329, 2021
Revised manuscript accepted for TC
Short summary
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021,https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021,https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021,https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary

Cited articles

Allard, M.: Geomorphological changes and permafrost dynamics: key factors in changing arctic ecosystems. An example from Bylot Island, Nunavut, Canada, Geoscience Canada, 205–212, 1996. 
Allard, M., Sarrazin, D., and L'Herault, E.: Borehole and near-surface ground temperatures in northeastern Canada, Nordicana D8, 2016. 
Allen, C. R., Kamb, W. B., Meier, M. F., and Sharp, R. P.: Structure of the lower Blue glacier, Washington, The J. Geol., 68, 601–625, https://doi.org/10.1086/626700, 1960. 
Alley, R. B., Lawson, D. E., Evenson, E. B., Strasser, J. C., and Larson, G. J.: Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory, J. Glaciol., 44, 563–568, 1998. 
Astakhov, V. I.: Geological conditions for the burial of Pleistocene glacier ice on the Yenisey, Polar Geogr. Geol., 10, 286–295, https://doi.org/10.1080/10889378609377298, 1986. 
Download
Short summary
This study provides a detailed description of relict glacier ice preserved in the permafrost of Bylot Island (Nunavut). We demonstrate that the 18O composition (-34.0 0.4 ‰) of the ice is consistent with the late Pleistocene age ice in the Barnes Ice Cap. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies could have significant impacts on permafrost geosystem landscape dynamics and ecosystems.