Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-3117-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-3117-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
NORSAR, 2007 Kjeller, Norway
Department of Geosciences, University of Oslo, Post Box 1047, 0316 Oslo, Norway
Michał Pętlicki
Centro de Estudios Científicos, Valdivia, Chile
Pierre-Marie Lefeuvre
Department of Geosciences, University of Oslo, Post Box 1047, 0316 Oslo, Norway
Giuseppa Buscaino
CNR, Anthropic Impacts & Sustainable Marine Environment Institute, Capo Granitola, Torretta Granitola, Italy
Christopher Nuth
Department of Geosciences, University of Oslo, Post Box 1047, 0316 Oslo, Norway
Christian Weidle
Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Andreas Köhler and Christian Weidle
Earth Surf. Dynam., 7, 1–16, https://doi.org/10.5194/esurf-7-1-2019, https://doi.org/10.5194/esurf-7-1-2019, 2019
Short summary
Short summary
The uppermost part of permanently frozen ground can thaw during summer and refreeze during winter. We use a method based on naturally generated seismic waves to continuously monitor these changes close to the research settlement of Ny-Ålesund in Svalbard between April and August 2016. Our results reveal some potential pitfalls when interpreting temporal variations in the data. However, we show that a careful data analysis makes this method a very useful tool for long-term permafrost monitoring.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Michał Pętlicki, Andrés Rivera, Jonathan Oberreuter, José Uribe, Johannes Reinthaler, and Francisca Bown
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-10, https://doi.org/10.5194/tc-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The terminus of San Quintín glacier, the largest of the Northern Patagonia Icefield in southern Chile, is rapidly disintegrating with large tabular icebergs into a proglacial lake left behind by this retreating glacier. We show that the ongoing retreat is caused by recent detachment of a floating terminus from the glacier bed. This process may lead to the disappearance of the last existing piedmont lobe in Patagonia, and one of the few remaining glaciers of this type in the world.
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Christopher Chambers, Ralf Greve, Bas Altena, and Pierre-Marie Lefeuvre
The Cryosphere, 14, 3747–3759, https://doi.org/10.5194/tc-14-3747-2020, https://doi.org/10.5194/tc-14-3747-2020, 2020
Short summary
Short summary
The topography of the rock below the Greenland ice sheet is not well known. One long valley appears as a line of dips because of incomplete data. So we use ice model simulations that unblock this valley, and these create a watercourse that may represent a form of river over 1000 km long under the ice. When we melt ice at the bottom of the ice sheet only in the deep interior, water can flow down the valley only when the valley is unblocked. It may have developed while an ice sheet was present.
B. Altena, O. N. Haga, C. Nuth, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Short summary
Estimating glacier changes involves measuring elevation changes, often using elevation models derived from satellites. Many elevation models have data gaps (voids), which affect estimates of glacier change. We compare 11 methods for interpolating voids, finding that some methods bias estimates of glacier change by up to 20 %, though most methods have a smaller effect. Some methods produce reliable results even with large void areas, suggesting that noisy elevation data are still useful.
Andreas Köhler and Christian Weidle
Earth Surf. Dynam., 7, 1–16, https://doi.org/10.5194/esurf-7-1-2019, https://doi.org/10.5194/esurf-7-1-2019, 2019
Short summary
Short summary
The uppermost part of permanently frozen ground can thaw during summer and refreeze during winter. We use a method based on naturally generated seismic waves to continuously monitor these changes close to the research settlement of Ny-Ålesund in Svalbard between April and August 2016. Our results reveal some potential pitfalls when interpreting temporal variations in the data. However, we show that a careful data analysis makes this method a very useful tool for long-term permafrost monitoring.
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018, https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
Short summary
Historical surveys performed through the use of aerial photography gave us the first maps of the Arctic. Nearly a century later, a renewed interest in studying the Arctic is rising from the need to understand and quantify climate change. It is therefore time to dig up the archives and extract the maximum of information from the images using the most modern methods. In this study, we show that the aerial survey of Svalbard in 1936–38 provides us with valuable data on the archipelago's glaciers.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Solveig H. Winsvold, Andreas Kääb, Christopher Nuth, Liss M. Andreassen, Ward J. J. van Pelt, and Thomas Schellenberger
The Cryosphere, 12, 867–890, https://doi.org/10.5194/tc-12-867-2018, https://doi.org/10.5194/tc-12-867-2018, 2018
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Lindsey I. Nicholson, Michał Pętlicki, Ben Partan, and Shelley MacDonell
The Cryosphere, 10, 1897–1913, https://doi.org/10.5194/tc-10-1897-2016, https://doi.org/10.5194/tc-10-1897-2016, 2016
Short summary
Short summary
An Xbox Kinect sensor was used as a close-range surface scanner to produce the first accurate 3D surface models of spikes of snow and ice (known as penitentes) that develop in cold, dry, sunny conditions. The data collected show how penitentes develop over time and how they affect the surface roughness of a glacier. These surface models are useful inputs to modelling studies of how penitentes alter energy exchanges between the atmosphere and the surface and how this affects meltwater production.
A. Kääb, D. Treichler, C. Nuth, and E. Berthier
The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, https://doi.org/10.5194/tc-9-557-2015, 2015
Short summary
Short summary
Based on satellite laser altimetry over the Pamir--Karakoram Himalaya we detect strongest elevation losses over east Nyainqentanglha Shan and Spiti--Lahaul but slight elevation gains over west Kunlun Shan rather than over Karakoram. The current sea-level contribution of Pamir--Karakoram Himalaya glaciers is about 10% of the total global contribution of glaciers outside the ice sheets. We also improve estimates of glacier imbalance contribution to river discharge in the Himalayas.
C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson
The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, https://doi.org/10.5194/tc-7-1603-2013, 2013
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Glaciers
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Everest South Col Glacier did not thin during the period 1984–2017
Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard
Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling
Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022, https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Short summary
The Müller Ice Cap will soon set the scene for a new drilling project. To obtain an ice core with stratified layers and a good time resolution, thickness estimates are necessary for the planning. Here we present a new and fast method of estimating ice thicknesses from sparse data and compare it to an existing ice flow model. We find that the new semi-empirical method is insensitive to mass balance, is computationally fast, and provides good fits when compared to radar measurements.
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022, https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
Short summary
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces sliding friction. This paper builds up a physical model and finds that thick and fast-flowing glaciers are sensitive to this friction disruption. The data from Greenland and Austfonna (Svalbard) glaciers over 20 years support the model prediction. To estimate the projected sea-level rise better, these sensitive glaciers should be frequently monitored for potential future instabilities.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Short summary
Extreme precipitation events in summer 2019 led to catastrophic loss of cave and surface ice in SE Europe at levels unprecedented during the last century. The projected continuous warming and increase in precipitation extremes could pose an additional threat to glaciers in southern Europe, resulting in a potentially ice-free SE Europe by the middle of the next decade (2035 CE).
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
Short summary
The Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory was updated to revise the underestimated glacier area in the first version. The total number and area of glaciers are 134 770 and 100 693 ± 11 790 km2 from 453 Landsat images, which were carefully selected for the period from 1990 to 2010, to avoid mountain shadow, cloud cover, and seasonal snow cover.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Cited articles
Alstott, J., Bullmore, E., and Plenz, D.: powerlaw: a Python package for
analysis of heavy-tailed distributions, PLoS ONE, 9, e85777,
https://doi.org/10.1371/journal.pone.0085777, 2014. a
Amundson, J. M., Truffer, M., Lüthi, M. P., Fahnestock, M., West, M., and
Motyka, R. J.: Glacier, fjord, and seismic response to recent large calving
events, Jakobshavn Isbræ, Greenland, Geophys. Res. Lett., 35, L22501
https://doi.org/10.1029/2008GL035281,
2008. a
ASL (Albuquerque Seismological Laboratory)/USGS: Global Seismograph Network
(GSN – IRIS/USGS), https://doi.org/10.7914/sn/iu, 1988. a
Aster, R. and Winberry, J.: Glacial seismology, Rep. Prog. Phys.,
80, 39 pp., https://doi.org/10.1088/1361-6633/aa8473, 2017. a
Awrangjeb, M.: Using point cloud data to identify, trace, and regularize the
outlines of buildings, Int. J. Remote Sens., 37, 551–579,
https://doi.org/10.1080/01431161.2015.1131868, 2016. a
Bartholomaus, T. C., Larsen, C. F., and O'Neel, S.: Does calving matter?
Evidence for significant submarine melt, Earth Planet. Sci.
Lett., 380, 21–30, https://doi.org/10.1016/j.epsl.2013.08.014, 2013. a, b
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python toolbox for seismology, Seismol. Res. Lett.,
81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a
Chapuis, A. and Tetzlaff, T.: The variability of tidewater-glacier calving:
origin of event-size and interval distributions, J. Glaciol., 60,
622–634, https://doi.org/10.3189/2014JoG13J215, 2014. a, b
Chapuis, A., Rolstad, C., and Norland, R.: Interpretation of amplitude data
from a ground-based radar in combination with terrestrial photogrammetry and
visual observations for calving monitoring of Kronebreen, Svalbard, Ann.
Glaciol., 51, 34–40, https://doi.org/10.3189/172756410791392781, 2010. a, b, c
Chen, X., Shearer, P., Walter, F., and Fricker, H.: Seventeen Antarctic seismic
events detected by global surface waves and a possible link to calving events
from satellite images, J. Geophys. Res.-Sol. Ea., 116, B06311,
https://doi.org/10.1029/2011JB008262, 2011. a
Deschamps-Berger, C., Nuth, C., Van Pelt, W., Berthier, E., Kohler, J., and
Altena, B.: Closing the mass budget of a tidewater glacier: the example of
Kronebreen, Svalbard, J. Glaciol., 65, 136–148,
https://doi.org/10.1017/jog.2018.98, 2019. a, b
Ekström, G., Nettles, M., and Abers, G. A.: Glacial earthquakes, Science,
302, 622–624, https://doi.org/10.1126/science.1088057, 2003. a
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr,
J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M.,
Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F.: A
reconciled estimate of glacier contributions to sea level rise: 2003 to 2009,
Science, 340, 852–857, https://doi.org/10.1126/science.1234532, 2013. a
Glowacki, O., Deane, G., Moskalik, M., Blondel, P., Tegowski, J., and
Blaszczyk, M.: Underwater acoustic signatures of glacier calving, Geophys.
Res. Lett., 42, 804–812, https://doi.org/10.1002/2014GL062859,
2015. a, b, c
Holmes, F. A., Kirchner, N., Kuttenkeuler, J., Krützfeldt, J., and
Noormets, R.: Relating ocean temperatures to frontal ablation rates at
Svalbard tidewater glaciers: Insights from glacier proximal datasets,
Sci. Rep., 9, 9442, https://doi.org/10.1038/s41598-019-45077-3, 2019. a, b
How, P., Schild, K. M., Benn, D. I., Noormets, R., Kirchner, N., Luckman, A.,
Vallot, D., Hulton, N. R., and Borstad, C.: Calving controlled by
melt-under-cutting: detailed calving styles revealed through time-lapse
observations, Ann. Glaciol., 60, 20–31,
https://doi.org/10.1017/aog.2018.28, 2019. a, b, c, d, e, f
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, 54, https://doi.org/10.3389/feart.2015.00054, 2015. a
Köhler, A., Nuth, C., Schweitzer, J., Weidle, C., and Gibbons, S. J.:
Regional passive seismic monitoring reveals dynamic glacier activity on
Spitsbergen, Svalbard, Polar Res., 34, 26178,
https://doi.org/10.3402/polar.v34.26178, 2015. a, b, c
Köhler, A., Nuth, C., Kohler, J., Berthier, E., Weidle, C., and Schweitzer,
J.: A 15 year record of frontal glacier ablation rates estimated from seismic
data, Geophys. Res. Lett., 43, 12155–12164,
https://doi.org/10.1002/2016GL070589, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Köhler, A., Weidle, C., and Nuth, C.: Glacier dynamic ice loss quantified
through seismic eyes (CALVINGSEIS) – Dataset, GFZ Data Services,
https://doi.org/10.5880/GIPP.201604.1, 2019. a, b, c
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (NZ), ISPRS J. Photogramm., 82, 10–26,
https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013. a, b
Lindbäck, K., Kohler, J., Pettersson, R., Nuth, C., Langley, K., Messerli, A., Vallot, D., Matsuoka, K., and Brandt, O.: Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard, Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, 2018. a
Mallalieu, J., Carrivick, J. L., Quincey, D. J., Smith, M. W., and James,
W. H.: An integrated Structure-from-Motion and time-lapse technique for
quantifying ice-margin dynamics, J. Glaciol., 63, 937–949,
https://doi.org/10.1017/jog.2017.48, 2017. a
Mercenier, R., Lüthi, M., and Vieli, A.: A transient coupled ice
flow-damage model to simulate iceberg calving from tidewater outlet glaciers,
J. Adv. Model. Earth Sy., 11, 3057–3072, https://doi.org/10.1029/2018MS001567,
2019. a
Minowa, M., Podolskiy, E. A., Jouvet, G., Weidmann, Y., Sakakibara, D.,
Tsutaki, S., Genco, R., and Sugiyama, S.: Calving flux estimation from
tsunami waves, Earth Planet. Sc. Lett., 515, 283–290,
https://doi.org/10.1016/j.epsl.2019.03.023, 2019. a, b, c, d
Murray, T., Selmes, N., James, T. D., Edwards, S., Martin, I., O'Farrell, T.,
Aspey, R., Rutt, I., Nettles, M., and Baugé, T.: Dynamics of glacier
calving at the ungrounded margin of Helheim Glacier, southeast Greenland,
J. Geophys. Res.-Earth, 120, 964–982,
https://doi.org/10.1002/2015JF003531, 2015. a, b
Nuth, C., Schuler, T. V., Kohler, J., Altena, B., and Hagen, J. O.: Estimating
the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation
changes and mass-balance modelling, J. Glaciol., 58, 119–133,
https://doi.org/10.3189/2012JoG11J036, 2012. a
O'Neel, S., Echelmeyer, K. A., and Motyka, R. J.: Short-term variations in
calving of a tidewater glacier: LeConte Glacier, Alaska, U.S.A., J.
Glaciol., 49, 587–598, https://doi.org/10.3189/172756503781830430, 2003. a
O'Neel, S., Marshall, H. P., McNamara, D. E., and Pfeffer, W. T.: Seismic
detection and analysis of icequakes at Columbia Glacier, Alaska, J.
Geophys. Res., 112, F03S23, https://doi.org/10.1029/2006JF000595, 2007. a
O'Neel, S., Larsen, C., Rupert, N., and Hansen, R.: Iceberg calving as a
primary source of regional-scale glacier-generated seismicity in the St.
Elias Mountains, J. Geophys. Res., 115, f04034,
https://doi.org/10.1029/2009JF001598, 2010. a
Pettit, E. C., Lee, K. M., Brann, J. P., Nystuen, J. A., Wilson, P. S., and
O'Neel, S.: Unusually loud ambient noise in tidewater glacier fjords: A
signal of ice melt, Geophys. Res. Lett., 42, 2309–2316,
https://doi.org/10.1002/2014GL062950, 2015. a
Podgórski, J., Pętlicki, M., and Kinnard, C.: Revealing recent
calving activity of a tidewater glacier with terrestrial LiDAR reflection
intensity, Cold Reg. Sci. Technol., 151, 288–301,
https://doi.org/10.1016/j.coldregions.2018.03.003, 2018. a
Podolskiy, E. A. and Walter, F.: Cryoseismology, Rev. Geophys., 54,
708–758, https://doi.org/10.1002/2016RG000526, 2016. a
Qamar, A.: Calving icebergs: A source of low-frequency seismic signals from
Columbia Glacier, Alaska, J. Geophys. Res., 93, 6615–6623,
https://doi.org/10.1029/JB093iB06p06615, 1988. a
Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking, The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, 2015. a, b, c, d
Schild, K., Renshaw, C., Benn, D., Luckman, A., Hawley, R., How, P., Trusel,
L., Cottier, F., Pramanik, A., and Hulton, N.: Glacier calving rates due to
subglacial discharge, fjord circulation, and free convection, J.
Geophys. Res.-Earth, 123, 2189–2204,
https://doi.org/10.1029/2017JF004520, 2018. a
Schweitzer, J., Fyen, J., Mykkeltveit, S., Gibbons, S., Pirli, M., Kühn,
D., and Kværna, T.: Seismic Arrays, in: New Manual
of Seismological Observatory Practice (NMSOP-2), edited by: Bormann, P., 2nd (revised) Edn.,
Potsdam: Deutsches GeoForschungsZentrum GFZ, 1–80, available at:
http://ebooks.gfz-potsdam.de/pubman/item/escidoc:43213:7 (last access: 21 November 2019), 2012. a
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical
modeling with python, in: Proceedings of the 9th Python in Science
Conference, 57–61, 2010. a
Sergeant, A., Mangeney, A., Yastrebov, V. A., Walter, F., Montagner, J.-P.,
Castelnau, O., Stutzmann, E., Bonnet, P., Ralaiarisoa, V. J.-L., Bevan, S.,
and Luckman, A.: Monitoring Greenland ice sheet buoyancy-driven calving
discharge using glacial earthquakes, Ann. Glaciol., 60, 75–95,
https://doi.org/10.1017/aog.2019.7, 2019. a, b, c
Tegowski, J., Deane, G., Blondel, P., Glowacki, O., and Moskalik, M.: An
acoustical study of gas bubbles escaping from melting growlers, in:
Proceedings of the 2nd International Conference and Exhibition on Underwater
Acoustics, 137–142, 2014. a
Torsvik, T., Albretsen, J., Sundfjord, A., Kohler, J., Sandvik, A. D.,
Skarðhamar, J., Lindbäck, K., and Everett, A.: Impact of tidewater
glacier retreat on the fjord system: Modeling present and future circulation
in Kongsfjorden, Svalbard, Estuar. Coast. Shelf S., 220,
152–165, https://doi.org/10.1016/j.ecss.2019.02.005, 2019. a
Urick, R.: The noise of melting icebergs, J. Acoust. Soc.
Am., 50, 337–341, https://doi.org/10.1121/1.1912637, 1971. a
Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn, D. I., Luckman, A., van Pelt, W. J. J., Nick, F., and Kohler, J.: Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard, The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, 2018. a, b, c, d
Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote,
P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and
Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press Cambridge, United Kingdom and
New York, NY, USA, 2013. a
Walter, A., Lüthi, M. P., and Vieli, A.: Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-102, in review, 2019. a, b, c
Walter, F., Amundson, J. M., O'Neel, S., Truffer, M., Fahnestock, M., and
Fricker, H. A.: Analysis of low-frequency seismic signals generated during a
multiple-iceberg calving event at Jakobshavn Isbræ, Greenland, J. Geophys. Res., 117, F01036, https://doi.org/10.1029/2011JF002132, 2012. a
Wessel, P. and Smith, W. H. F.: New, improved version of GMT released, Eos,
Transactions, American Geophysical Union, 79, 579–579,
https://doi.org/10.1029/98EO00426, 1998. a
Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., and
Trujillo, J.: A comparison of select trigger algorithms for automated global
seismic phase and event detection, B. Seismol. Soc.
A., 88, 95–106, 1998. a
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Ice loss at the front of glaciers can be observed with high temporal resolution using...