Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 13, issue 11
The Cryosphere, 13, 2887–2900, 2019
https://doi.org/10.5194/tc-13-2887-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 2887–2900, 2019
https://doi.org/10.5194/tc-13-2887-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Nov 2019

Research article | 08 Nov 2019

Wave energy attenuation in fields of colliding ice floes – Part 1: Discrete-element modelling of dissipation due to ice–water drag

Agnieszka Herman et al.

Related authors

Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bothnian Bay (Baltic Sea)
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-153,https://doi.org/10.5194/essd-2020-153, 2020
Preprint under review for ESSD
Short summary
High-resolution simulations of interactions between surface ocean dynamics and frazil ice
Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-189,https://doi.org/10.5194/tc-2020-189, 2020
Revised manuscript accepted for TC
Short summary
Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2901–2914, https://doi.org/10.5194/tc-13-2901-2019,https://doi.org/10.5194/tc-13-2901-2019, 2019
Short summary
Floe-size distributions in laboratory ice broken by waves
Agnieszka Herman, Karl-Ulrich Evers, and Nils Reimer
The Cryosphere, 12, 685–699, https://doi.org/10.5194/tc-12-685-2018,https://doi.org/10.5194/tc-12-685-2018, 2018
Short summary
Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model
Agnieszka Herman
The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017,https://doi.org/10.5194/tc-11-2711-2017, 2017
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020,https://doi.org/10.5194/tc-14-2369-2020, 2020
Short summary
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407, https://doi.org/10.5194/tc-14-2387-2020,https://doi.org/10.5194/tc-14-2387-2020, 2020
Short summary
Toward a method for downscaling sea ice pressure
Jean-Francois Lemieux, Bruno Tremblay, and Mathieu Plante
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-134,https://doi.org/10.5194/tc-2020-134, 2020
Revised manuscript accepted for TC
Short summary
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020,https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary
Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns
Evelyn Jäkel, Johannes Stapf, Manfred Wendisch, Marcel Nicolaus, Wolfgang Dorn, and Annette Rinke
The Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019,https://doi.org/10.5194/tc-13-1695-2019, 2019
Short summary

Cited articles

Ardhuin, F., Collard, F., Chapron, B., Girard-Ardhuin, F., Guitton, G., Mouche, A., and Stopa, J.: Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A, Geophys. Res. Lett., 42, 2317–2325, https://doi.org/10.1002/2014GL062940, 2015. a
Ardhuin, F., Boutin, G., Stopa, J., Girard-Ardhuin, F., Melsheimer, C., Thomson, J., Kohout, A., Doble, M., and Wadhams, P.: Wave attenuation through an arctic marginal ice zone on 12 October 2015: 2. Numerical modeling of waves and associated ice breakup, J. Geophys. Res., 123, 5652–5668, https://doi.org/10.1002/2018JC013784, 2018. a
Bateson, A. W., Feltham, D. L., Schröder, D., Hosekova, L., Ridley, J. K., and Aksenov, Y.: Impact of floe size distribution on seasonal fragmentation and melt of Arctic sea ice, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-44, in review, 2019. a
Bennetts, L. and Squire, V.: Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves, Ocean Model., 45–46, 1–13, https://doi.org/10.1016/j.ocemod.2012.01.002, 2012. a
Cheng, S., Rogers, W., Thomson, J., Smith, M., Doble, M., Wadhams, P., Kohout, A., Lund, B., Persson, O., Collins III, C., Ackley, S., Montiel, F., and Shen, H.: Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone, J. Geophys. Res., 122, 8740–8793, https://doi.org/10.1002/2017JC013275, 2017a. a
Publications Copernicus
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. Close to the ice edge, processes contributing to dissipation include collisions between ice floes and turbulence generated under the ice due to velocity differences between ice and water. This paper analyses details of those processes both theoretically and by means of a numerical model.
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading...
Citation