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Abstract. The energy of water waves propagating through
sea ice is attenuated due to non-dissipative (scattering) and
dissipative processes. The nature of those processes and
their contribution to attenuation depends on wave charac-
teristics and ice properties and is usually difficult (or im-
possible) to determine from limited observations available.
Therefore, many aspects of relevant dissipation mechanisms
remain poorly understood. In this work, a discrete-element
model (DEM) is used to study one of those mechanisms: dis-
sipation due to ice–water drag. The model consists of two
coupled parts, a DEM simulating the surge motion and colli-
sions of ice floes driven by waves and a wave module solving
the wave energy transport equation with source terms com-
puted based on phase-averaged DEM results. The wave en-
ergy attenuation is analysed analytically for a limiting case of
a compact, horizontally confined ice cover. It is shown that
the usage of a quadratic drag law leads to non-exponential
attenuation of wave amplitude a with distance x, of the form
a(x)= 1/(αx+ 1/a0), with the attenuation rate α linearly
proportional to the drag coefficient. The dependence of α on
wave frequency ω varies with the dispersion relation used.
For the open-water (OW) dispersion relation, α ∼ ω4. For
the mass loading dispersion relation, suitable for ice covers
composed of small floes, the increase in α with ω is much
faster than in the OW case, leading to very fast elimination
of high-frequency components from the wave energy spec-
trum. For elastic-plate dispersion relation, suitable for large
floes or continuous ice, α ∼ ωm within the high-frequency
tail, with m close to 2.0–2.5; i.e. dissipation is much slower
than in the OW case. The coupled DEM–wave model pre-
dicts the existence of two zones: a relatively narrow area of

very strong attenuation close to the ice edge, with energetic
floe collisions and therefore high instantaneous ice–water ve-
locities, and an inner zone where ice floes are in permanent
or semi-permanent contact with each other, with attenuation
rates close to those analysed theoretically. Dissipation in the
collisional zone increases with an increasing restitution coef-
ficient of the ice and with decreasing floe size. In effect, two
factors contribute to strong attenuation in fields of small ice
floes: lower wave energy propagation speeds and higher rel-
ative ice–water velocities due to larger accelerations of floes
with smaller mass and more collisions per unit surface area.

1 Introduction

As ocean waves propagate through sea ice, they undergo at-
tenuation due to both non-dissipative and dissipative pro-
cesses. Whereas attenuation due to non-dissipative scattering
has been extensively studied and can be regarded as well un-
derstood (see, e.g. Squire, 2007; Kohout and Meylan, 2008;
Montiel et al., 2016; Montiel and Squire, 2017, and refer-
ences there), many aspects of dissipative processes accom-
panying wave propagation in sea ice remain relatively unex-
plored – even though observations leave little doubt that they
play an important role in wave propagation in the marginal
ice zone (MIZ). Understanding those processes and parame-
terizing their effects in models is important not only for re-
producing and predicting local conditions in the MIZ but also
at much larger scales (see, e.g. the recent model sensitivity
study by Bateson et al., 2019, who showed that the simulated
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sea ice extent and volume in the Arctic is very sensitive to
the wave attenuation rates).

Depending on wave forcing and sea ice properties, the rel-
ative importance of individual dissipative processes varies;
similarly, the relative contribution of scattering and dissipa-
tion to the overall wave attenuation is strongly dependent on
wave and ice conditions. In general, attenuation due to scat-
tering at floes’ edges tends to dominate at relatively low ice
concentration and, crucially, when the floe sizes are compa-
rable with wavelengths (Kohout, 2008; Kohout and Meylan,
2008). In compact ice in the inner parts of the MIZ, scat-
tering is induced at cracks and locations of rapid changes
of ice thickness (e.g. pressure ridges; Bennetts and Squire,
2012). Processes leading to the dissipation of wave energy
take place within the ice itself as well as in the underly-
ing water layer and include viscous deformation of the ice,
overwash, vortex shedding and turbulence generation, fric-
tion between ice floes and between ice and water (form and
skin drag), inelastic floe–floe collisions, breaking and raft-
ing of floes, and many more. Although, in some situations,
the observed characteristics of waves in ice (change of wave
height with distance, directional distribution of wave energy,
etc.) can be satisfactorily explained by non-dissipative scat-
tering, taking into account dissipation is usually necessary
for obtaining agreement between observations and models,
especially in grease and pancake ice or small floes (e.g. Liu
and Mollo-Christensen, 1988; Rogers et al., 2016; Squire and
Montiel, 2016; De Santi et al., 2018; Sutherland and Dumont,
2018; Sutherland et al., 2018a).

Considering the multitude of processes contributing to
wave energy attenuation, it is not surprising that the observed
attenuation rates span a few orders of magnitude (e.g. Rogers
et al., 2016; Stopa et al., 2018b). Although the available ob-
servational data on wave energy attenuation in sea ice have
been growing since the 1980s and include measurements per-
formed with buoys (e.g. Wadhams et al., 1988; Liu et al.,
1991; Cheng et al., 2017a; Montiel et al., 2018), airborne
synthetic aperture radar (SAR) and scanning lidar (Liu et al.,
1991; Sutherland et al., 2018b), underwater acoustic Doppler
current profiler (ADCP; Hayes et al., 2007), and satellite
SAR (Ardhuin et al., 2015; Stopa et al., 2018b, a), the in-
terpretation of the observed attenuation rates is extremely
difficult, as it would require simultaneous measurements of
several wave and ice characteristics over large distances. For
example, although SAR data provide information on the vari-
ability in wave height and direction over large spatial do-
mains, the lack of accompanying spatial distribution of ice
properties (thickness, floe size, elastic modulus, etc.) makes
inferences regarding possible causes of that variability very
difficult.

Among the most crucial characteristics of wave energy at-
tenuation in sea ice are the functional dependence of wave
amplitude a on distance travelled, a(x), and the functional
form describing the dependence of the respective attenuation
coefficient α on wave frequency, α(ω).

In most studies, exponential attenuation is assumed, and
no alternative forms of a(x) are considered. This is in many
cases a well-motivated choice. The exponential model does
successfully represent observations in several of the studies
cited above. In many cases, large scatter in observational data
and/or a limited number of measurement locations make the
usage of more complicated models unjustified. Also, several
attenuation processes, including scattering, lead to exponen-
tial attenuation. On the other hand, however, some observa-
tions can hardly be represented by an exponential curve with
a single attenuation rate over long distances, indicating that
even in situations when the assumption of linear attenuation
is justified, α might be strongly spatially variable (see, e.g.
Stopa et al., 2018a; Ardhuin et al., 2018, who fitted sepa-
rate exponential curves to data from locations close to the ice
edge and from those further into the ice). Moreover, several
potentially relevant mechanisms leading to non-exponential
attenuation have been identified in theoretical studies, includ-
ing ice–water friction relevant to this work (Shen and Squire,
1998; Kohout et al., 2011). In a recent paper, Squire (2018)
discusses a more general formula:

da/dx =−αan, (1)

which produces exponential attenuation, a = a0 exp(−αx),
for n= 1 and has the solution a1−n

= a1−n
0 − (1− n)αx for

n 6= 1.
Another problem with some models predicting exponen-

tial attenuation is related to the second of the two attenuation
characteristics mentioned above – they produce α(ω) values
that do not agree with observations. Most observational data
suggest a power-law dependence, α ∼ ωm, with an exponent
m in the range of 2–4, which is much lower than predicted
by several widely used sea ice models (Meylan et al., 2018).
The importance of the α(ω) behaviour in interpreting the ob-
served wave energy attenuation in sea ice has been analysed,
e.g. by Meylan et al. (2014) and Li et al. (2015).

In this work – described below and in the companion pa-
per (Herman et al., 2019), referred to further as Part 2 – we
combine discrete-element modelling (DEM) and laboratory
experiments to study selected aspects of attenuation and dis-
sipation of wave energy in fragmented sea ice. The DEM
is that of Herman (2016), with wave forcing formulated by
Herman (2018). It simulates the wave-induced surge motion
of ice floes of arbitrary sizes and is used here with several
necessary modifications described later. The laboratory ex-
periments, analysed in Part 2, were performed as part of the
international project “Loads on Structure and Waves in Ice”
(LS-WICE; see Cheng et al., 2017b) and include tests re-
lated to propagation and attenuation of regular waves through
fields of densely packed ice floes of equal sizes.

The present study is to a large extent motivated by the re-
sults of Herman (2018), who studied wave-induced floe col-
lisions in highly idealized conditions (regular waves, con-
stant wave amplitude, periodic domain boundaries, etc.), but
with forcing formulated by integrating dynamic pressure and
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stress acting on each floe over the floe’s surface area – as op-
posed to earlier similar models, in which forcing was spec-
ified for the centre of mass of each floe. It was shown that
this seemingly minor difference enabled the model to repro-
duce the amplitudes of the surge motion of floes with sizes
comparable with wavelength. Obviously, as the floe size in-
creases, the floes are not able to follow the oscillating mo-
tion of the surrounding water, which leads to high ice–water
velocity differences, which in turn might lead to substantial
stress at the ice–water interface, depending on the values of
the skin and form drag coefficients. Most importantly from
the point of view of the present study, Herman (2018) demon-
strated that the presence of collisions strongly enhances ice–
water drag through two mechanisms, the relative importance
of which depends on ice concentration, ice mechanical prop-
erties, floe size, and wave characteristics. One mechanism
dominates in ice composed of small floes with a large resti-
tution coefficient, i.e. in situations with energetic collisions
that lead to high post-collisional velocities of the floes. The
second mechanism is particularly effective in ice composed
of large, densely packed floes, when neighbouring floes stay
in contact over prolonged periods of time so that the contact
forces are non-zero over a substantial fraction of the wave
period. Although the temporal variability in ice–water veloc-
ities in those two extremes is very different – with very high
but short-lived peaks in the first case and less extreme, more
uniformly time-distributed values in the second case – the
overall, phase-averaged effect is comparable in both cases
and leads to significantly enhanced drag forces. This obser-
vation led Herman (2018) to speculate that this mechanism,
based on an interplay of floe–floe collisions and ice–water
drag effects, might contribute to dissipation of wave energy.
To elucidate this idea in more detail is one of the purposes
of the present study. To this end, we couple the DEM sea ice
model with a simple wave attenuation model (in a manner
similar to that in Shen and Squire, 1998) and study the dy-
namics of ice floes and wave energy dissipation for a wide
range of combinations of parameters. The overall set-up of
the model corresponds to that of the laboratory experiment
mentioned above. We use the results of numerical simula-
tions and, in Part 2, laboratory observations to investigate
several aspects of wave energy dissipation in sea ice. As al-
ready mentioned, one of the major specific goals is to analyse
details of dissipation due to ice–water drag and collisions of
ice floes. Another goal, which we focus on in Part 2, is to
illustrate how, even in seemingly very simple settings, wave
propagation and attenuation in sea ice is shaped by several
interrelated processes, impossible to isolate from each other
and how several very different model configurations can be
fitted to satisfactorily reproduce the observed wave attenua-
tion rates, making identification of processes actually respon-
sible for dissipation a formidable task.

After formulating the assumptions and equations of the sea
ice and wave model in the next section, we begin our study
with a theoretical analysis of energy dissipation induced by

ice–water drag in a special, limiting case of waves propa-
gating through horizontally confined ice (i.e. with zero hor-
izontal velocity). We show that the attenuation equation in
this case can be solved analytically and that this model con-
figuration leads to non-exponential attenuation of the form
of Eq. (25), with α(ω) strongly dependent on the assumed
dispersion relation. This result is particularly interesting in
view of the results of Cheng et al. (2018), who showed that
the dispersion relation is strongly affected by floe size, with
the wavenumber k increasing with decreasing floe length.
The DEM results are presented in Sect. 4. We begin with
an analysis of the model sensitivity to changes of parame-
ters, including the ice concentration, restitution coefficient,
drag coefficient, and floe size; we also discuss in detail a typ-
ical shape of the attenuation curve, which in many cases re-
flects the existence of two clearly distinct regions – a narrow
zone close to the ice edge, with strong collisions and very
strong dissipation, and an inner zone with densely packed
floes staying in semi-permanent contact with their neigh-
bours and with slower attenuation, close to the theoretical
solution mentioned above. We discuss the modelling results
in the context of recent research on wave attenuation in sea
ice in Sect. 5.

2 Model description

As already mentioned in the Introduction, the model used
here consists of two coupled parts: a sea ice module and a
wave module. The sea ice part is based on the DEM by Her-
man (2018), with modifications described below. The cou-
pled model is one-dimensional and considers only the hori-
zontal (surge and drift) motion of ice floes.

2.1 Definitions and assumptions

We consider linear, unidirectional, progressive waves with
period T , propagating in the positive x direction:

η = a(x)cosθ, (2)

uw = a(x)ω
cosh[k(z+h)]

sinh[kh]
cosθ

= uw,0(x, t)
cosh[k(z+h)]

cosh[kh]
, (3)

ww = a(x)ω
sinh[k(z+h)]

sinh[kh]
sinθ

= ww,0(x, t)
sinh[k(z+h)]

sinh[kh]
, (4)

θ = kx−ωt, (5)

where η denotes the instantaneous water surface elevation
relative to the still water level at z= 0, (uw,ww) is the
components of the water velocity vector in the xz plane,
(uw,0,ww,0) is velocity components at z= 0, t denotes time,
a is the x-dependent wave amplitude, k = 2π/Lw denotes
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the wavenumber, Lw denotes the wavelength, ω = 2π/T =
2πf denotes the wave angular frequency, and θ denotes the
phase.

The angular frequency and the wavenumber are related by
the following dispersion relation (see, e.g. Fox and Squire,
1990; Collins et al., 2017):

ω2 (1+β1k tanh[kh])= (g+β2k
4)k tanh[kh], (6)

with

β1 =
ρi

ρw
hi,

and

β2 =
Eh3

i
12ρw(1− ν2)

,

where g denotes acceleration due to gravity, ρw is the water
density, ρi is ice density, hi is ice thickness, E is the elastic
modulus, and ν is Poisson’s ratio. The corresponding group
velocity cg ≡ dω/dk is given by

cg =
ω

2k

[(
1−

β1ω
2

g+β2k4

)(
1+

2kh
sinh[2kh]

)
+

4β2k
4

g+β2k4

]
.

(7)

In its full form, when β1 (the inertial coefficient) and β2 (the
flexural rigidity) are different from zero, Eqs. (6) and (7)
describe waves propagating in water covered with an elas-
tic plate. If E = 0 and thus β2 = 0, Eqs. (6) and (7) reduce
to the mass loading model, which further reduces to open
water (OW) waves when β1 = 0 (i.e. hi = 0 and no ice is
present). The elastic-plate and mass loading models will be
used in this study as two limiting cases: one suitable for situa-
tions with very large floes that undergo flexural motion (note
that although the DEM disregards the vertical deflection of
the floes, its influence on wavelength and group velocity are
taken into account) and the second one suitable for very small
and non-interacting floes behaving as rigid floating objects.
Although, in general, the open water case is not relevant to
ice-covered seas, it is very useful as a reference (importantly,
also, the wavenumbers observed in several tests of the ex-
periment discussed in Part 2 were very close to open water
values). In the rest of the paper, indices EP, ML, and OW will
be used to designate wavenumber and group velocity from a
particular model (kep, cg,ep, etc.); symbols without an index
will be used in a more general context, when no particular
model is assumed.

The choice of dispersion relation (Eq. 6) was motivated
by two reasons. First, all variables occurring in Eq. (6) were
known from measurements. The usage of another dispersion
relation, dependent, for example, on the viscous parameter
of the ice, would introduce a new unknown to our analysis,
which is very difficult to directly measure. The second, more

important reason was consistency between the dispersion re-
lation used and the assumptions underlying the DEM (indi-
vidual ice floes and elastic interactions between them). It is
also worth pointing out that our observations from the lab-
oratory, described in Part 2, as well as the previous analysis
of the LS-WICE data by Cheng et al. (2018), provide argu-
ments that viscous damping within the floating ice cover in
those experiments was not significant and that Eq. (6) rep-
resents the laboratory conditions well (notably, the ice floes
floated in clear water, as opposed to many observations of
wave damping in the MIZ, where the presence of a frazil–
pancake mixture gives the surface ocean layer high effective
viscosity).

It must be noted that in the case of small-amplitude, irrota-
tional water waves propagating under multiple elastic, non-
colliding plates floating on the surface, the velocity poten-
tial – and thus the velocity components – can be expressed,
for each plate, as a sum of transmitted and reflected waves,
each in turn consisting of travelling, damped travelling, and
evanescent modes (see, e.g. Kohout and Meylan, 2008). Us-
ing Eqs. (2)–(5) with the dispersion relation (Eq. 6) amounts
to taking into account only the transmitted (“zeroth”) com-
ponent and omitting the remaining ones. In other words, it
amounts to disregarding all scattering effects. The conse-
quences of this simplification will be discussed in the last
section and, in the context of the experimental data, in Part 2.

As already mentioned, the model is one-dimensional, i.e.
the ice floes are placed along the x axis and indexed in such a
way that the ith floe neighbours the (i−1)th and the (i+1)th
floes in the negative (up-wave) and positive (down-wave) x
direction, respectively. The floes are cuboid rigid bodies, and
their total number is Nf. Although the DEM allows for spec-
ifying different properties for each discrete element, in this
study all floes have identical density ρi, thickness hi, length
Lx = 2ri, width Ly , and mass mi = 2riLyhiρi. The thick-
ness of the submerged part of each floe equals hiρi/ρw; i.e.
an Archimedean balance is assumed. Apart from the elas-
tic modulus E and Poisson’s ratio ν, the ice is characterized
by its restitution coefficient ε. As said, the model describes
the horizontal (surge) motion of ice floes. Thus, the relevant
time-dependent variables for each floe are the horizontal po-
sition of its centre of mass, xi, and its horizontal translational
velocity, ui.

2.2 Discrete element sea ice model

As in Herman (2018), the model solves the linear-momentum
equations for each ice floe, with four types of forces:

mi
dui

dt
= Fw,i +Fv,i +Fd,i +Fc,i, i = 1, . . .,Nf, (8)

where Fw,i denotes the wave-induced force (Froude–Krylov
force), Fv,i is the virtual (or added) mass force, Fd,i is the
drag force, and Fc,i is the sum of contact forces from all colli-
sion or contact partners of floe i. A detailed discussion on the
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formulation of these forces can be found in Herman (2018)
and will not be repeated here. The only difference with re-
spect to the previous study concerns the computation of the
drag force Fd,i . Due to reasons of computational efficiency,
Herman (2018) proposed an approximate formula to avoid
numerically integrating the local ice–water stress over the
bottom surface of each floe at each time step. In the present
study, a very similar formula is required for computation of
both Fd,i and the energy dissipation term in the wave-energy
equation (see further details in Sect. 2.3). Thus, for the sake
of consistency between the different model parts, the inte-
grals in both cases are computed numerically, with the same
spatial resolution.

2.3 Wave energy attenuation

As marked explicitly in Eqs. (2)–(4), the wave amplitude in
the present model varies in space, a = a(x). It is assumed
that the amplitude at the ice edge (corresponding to the posi-
tion of the left side of the first floe, x = x1−r1) is known and
equals a0. At the remaining locations, a is determined from
the energy conservation equation:

d
dx
(cgEw)=

∑
m

Sdis,m, (9)

where the wave energy Ew (in J m−2) is given as

Ew =
1
2
ρwga

2, (10)

and the source terms on the right-hand side of Eq. (9) rep-
resent phase-averaged dissipation rate per unit area of an ice
floe (expressed in W m−2). In this work, two source terms
are considered. The first one (Ssd), of particular interest in
this study, describes energy dissipation due to skin drag at
the ice–water interface. The second one (Sow), included for
the purpose of the laboratory case study analysed in Part 2,
describes energy losses due to overwash. Thus, from Eqs. (9)
and (10),

1
2
ρwgcg

d(a2)

dx
= Ssd+ Sow, (11)

so that, assuming constant dissipation over a certain (small)
distance x, the amplitude at x0+x can be computed from the
amplitude at x0 as

a(x0+ x)=

[
a2(x0)+

2(Ssd+ Sow)

ρwgcg
x

]1/2

. (12)

Note that, different than in the study by Shen and Squire
(1998), Ew denotes the energy of the waves, not the energy
of the whole water and ice system. This justifies the usage of
the group velocity cg in Eq. (9) as the energy-transport ve-
locity and of Eq. (10), relating Ew to the wave amplitude a.
Crucially, this is the reason why no source term is present

in Eq. (11) explicitly describing dissipation due to inelastic
collisions. The inelastic collisions influence the wave propa-
gation through their influence on ice velocity, which in turn
modifies the ice–water drag. This makes the model different
from that of Shen and Squire (1998).

2.3.1 Dissipation due to ice–water drag

For an individual ice floe with bottom surface area Abot, Ssd
can be obtained from (see, e.g. Shen and Squire, 1998)

Ssd =−
1
nT T

1
Abot

t0+nT T∫
t0

∫
Abot

τwureldsdt, (13)

where nT is an integer (i.e. the averaging is performed over
a multiple of the wave period T ), urel denotes the module of
the local, instantaneous ice–water velocity difference,

urel(x, t)= |ui(t)− uw,0(x, t)|, (14)

and τw denotes the module of the local ice–water stress. In
this study we use the quadratic drag law:

τw = ρwCsdu
2
rel, (15)

and assume that the drag coefficient Csd is constant.

2.3.2 Dissipation due to overwash

We use a very unsophisticated approximation of overwash
effects, the development of which was motivated by the ob-
servation that strong overwash occurred in laboratory tests
analysed in Part 2. The algorithm described here should be
treated as a framework for future parameterizations rather
than as an ultimate solution.

Following Skene et al. (2018), the energy flux (in N s−1)
due to overwash, Ėow, consisting of the kinetic and poten-
tial energy parts, can be expressed in terms of the average
overwash velocity uow and depth how:

Ėow = uowhow

(
1
2
ρwu

2
ow+ ρwghow

)
. (16)

The results of Skene et al. (2015, 2018) justify an assumption
that overwash behaves as a shallow water wave propagating
over the upper surface of the ice so that uow = (ghow)

1/2 and

Ėow =
3
2
ρwg

3/2h
5/2
ow . (17)

Estimating how is the most problematic part of the algorithm.
It involves two issues: first, a criterion for the overwash to
occur (i.e. the conditions for how > 0) and, second, how how
depends on wave and ice conditions. In this study, one of the
simplest expressions possible is adopted, in which

how = cowmax {ka− smin,0} . (18)
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Namely, how depends linearly on the wave steepness ka, and
overwash occurs only if ka exceeds a limiting value smin.
This choice is motivated by laboratory observations analysed
in Part 2, in which the wave steepness at the ice edge seems
to provide a good measure of the occurrence and intensity
of overwash, as well as by the results of Skene et al. (2015,
2018), who obtained an approximately linear dependence of
how on ka for small wave steepness, relevant to this study
(in the laboratory set-up in Part 2 the maximum ka0 at the
ice edge equaled ∼ 0.05). As Skene et al. (2015) observed
a superlinear dependence of how on ka for larger ka values,
how ∼ (ka− smin)

γ with γ > 1 might be more suitable over
a wider range of conditions; however, we do not consider
γ 6= 1 in this work. We are also fully aware that the over-
wash thickness depends on a number of other factors, includ-
ing ice thickness and density (and thus freeboard), floe sizes
and their related flexural motion, and wave characteristics.
However, as already mentioned, the lack of validation data
makes more-sophisticated parameterizations unsupported. In
computations in Part 2, Eq. (17) is used with how computed
from Eq. (18), and smin and cow are treated as adjustable pa-
rameters that might be different for different floe sizes. It is
assumed that the energy flux Ėow,i,i+1, occurring locally at
the boundaries between ice floes, describes the energy of the
propagating wave “removed” between floe i and i+ 1.

2.4 Numerical algorithm

In the model described in Sect. 2.1–2.3, the wave energy dis-
sipation Ssd is computed based on the relative ice–water ve-
locity urel integrated over several wave periods. In turn, com-
putation of urel requires running the DEM with spatially vari-
able (and known) wave amplitude as input. Analogous inter-
dependencies occur in the computation of wave attenuation
due to overwash. As we are interested in a quasi-stationary
state, in which the floes move and collide with their neigh-
bours, but the wave amplitude does not change in time, we
use an iterative algorithm. The model is initialized with wave
amplitude ai at each floe equal to the specified incident am-
plitude a0. Then the following steps are repeated until the
solution converges.

1. The model is run over n0 wave periods to reach a sta-
tionary state.

2. Over the next nT wave periods, Ssd is computed for each
floe using Eqs. (13)–(15). Numerically, for rectangular
floes considered here,

Ssd =−
ρwCsd

nT ntnx

nT nt∑
j=1

nx∑
k=1

u3
rel,j,k, (19)

where Lx = nx1x and T = nt1t , nt and nx are inte-
gers, 1t is the time step of the model, and 1x is the
spatial resolution in the wave propagation direction.

3. New wave amplitude ai at the centre of the ith floe
(i = 2, . . .,Nf) is computed from Eq. (12) and from the
amplitude ai−1 at the centre of floe i−1, assuming that
the dissipation equals Ssd,i−1 over a distance between
xi−1 and xi−1+ r and Ssd,i over a distance xi− r and xi
(if there is open water between floes i− 1 and i, dissi-
pation there is zero):

ai =max

{[
a2
i−1+

Lx

ρwgcg

(
Ssd,i−1+ Ssd,i

)]1/2

,0

}
.

(20)

4. If overwash effects are taken into account, how,i is com-
puted from Eq. (18) for each floe, and ais values are
updated based on Eq. (17):

ai =max


[
a2
i−1− 3g1/2 h

5/2
ow

cg

]1/2

,0

 . (21)

The convergence criterion is based on the maximum wave
amplitude difference between two consecutive loops of the
algorithm: maxi{|ai,old−ai,new|/ai,old}< δ, where δ is set by
the user.

In the present model version, when computing urel in
Eq. (14), the same amplitude is used over the entire floe
length – which is equivalent to an assumption that wave en-
ergy attenuation per ice floe is not very large. This assump-
tion makes the attenuation algorithm consistent with the rest
of the model (e.g. the Fw force is computed for constant a
for each floe).

It is worth noting that the number of iterations necessary
for convergence increases with the distance over which at-
tenuation is computed – as each location is affected by the
situation in the up-wave direction, the convergence criterion
is reached very fast close to the ice edge, and the required
number of iterations increases with increasing x. Not surpris-
ingly, the model converges more slowly with higher restitu-
tion coefficients ε and higher drag coefficients Csd, i.e. more
energetic collisions and stronger ice–water coupling.

3 Special case of ice concentration c = 1

Before proceeding to an analysis of full DEM simulations
with collisions, it is useful to consider a limiting case with ice
concentration c = 1 and horizontally confined ice, i.e. when
ui(x, t)= 0. In this case, urel = |uw,0| and, from Eq. (3), its
phase-averaged third power is

u3
rel =

4
3π

(
aω

tanh[kh]

)3

, (22)

so that the wave attenuation can be computed analytically
from the set of equations formulated in Sect. 2.3. We have
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(disregarding overwash effects)

a
da
dx
=

Ssd

ρwgcg
=−

Csd

gcg
u3

rel, (23)

which leads to

da
dx
=−αca

2, (24)

with

αc =
4Csd

3πg
ω3

cgtanh3
[kh]

.

The index c in the attenuation coefficient αc should indicate
that it represents a limiting case of confined ice, with no ice
motion and thus no collision effects.

Notably, Eq. (24) has the form of Eq. (1) discussed by
Squire (2018), with n= 2. The solution of Eq. (24) is

a(x)

a0
=

1
a0αcx+ 1

. (25)

The attenuation is non-exponential and, not surprisingly, αc
increases linearly with Csd. Importantly, αc is also frequency
dependent through the term ω3/(cgtanh3

[kh]). Thus, it is
also directly dependent on the dispersion relation used. In
the general case of the full elastic-plate model (Eqs. 6, 7),

ω3

cgtanh3
[kh]
=

2ω4

g

A2[
B
(

1+ 2kh
sinh[2kh]

)
+ 4A(B − 1)

]
tanh4
[kh]

, (26)

where, for the sake of brevity, we introduced the notation
A= 1+β1k tanh[kh] and B = 1+β2k

4/g. In the simplest
version of this model, i.e. when open-water dispersion rela-
tion is assumed, A= B = 1 and

αc,ow =
8Csd

3πg2 f̃ (kh)ω
4, (27)

with

f̃ (kh)= (tanh[kh])−4
(

1+
2kh

sinh[2kh]

)−1

.

Thus, in deep water, when f̃ (kh)→ 1, αc,ow is proportional
to ω4 (note that the attenuation coefficient in this case differs
from that obtained by Kohout et al., 2011, only by a con-
stant, as they used the peak orbital velocity instead of phase-
averaged velocity to compute Ssd). In more general condi-
tions of finite water depth, αc,ow has an ω4 tail (see black
curves in Fig. 1b).

In the case of the mass loading model, A> 1 and B = 1
so that

αc,ml = A
2αc,ow, (28)

and, as A itself is an increasing function of ω (through its
dependence on k), the mass loading model predicts a faster-
than-ω4 increase in αc,ml with ω (red and violet curves in
Fig. 1b; note also that, for the given hi, the mass load-
ing model produces positive group velocities only for ω2 <

gρw/(ρihi)). The difference between αc,ml and αc,ow be-
comes larger with increasing ice thickness hi. In deep wa-
ter, αc,ml ∼ (1+ ρi/ρwkhi)

2, but due to typically very small
values of khi, the relationship between αc,ml and hi can be
regarded as approximately linear (as observed, e.g. by Doble
et al., 2015).

If β2 > 0, i.e. B > 1, the rate of increase in αc with ω
slows down relative to the open water model (blue and yel-
low curves in Fig. 1b). In this general case, Eq. (26) cannot
be written in the form c̃ωm in the whole frequency range.
However, the high-frequency tail of αc,ep can be approxi-
mated well in this form. For the two examples shown in
Fig. 1, the least-squares fit of a c̃ωm function to the data gives
m= 1.994 and m= 2.397 for the laboratory and field-scale
case, respectively.

This very different behaviour of αc(ω) in the mass load-
ing and elastic-plate models (originating from the group ve-
locity decreasing or increasing with wave frequency, respec-
tively; Fig. 1a) indicates that one should expect very differ-
ent wave attenuation patterns related to ice–water drag in ice
composed of small and large floes. Differences in the dis-
persion relation will lead to differences in attenuation rates,
with very strong damping of high-frequency waves in fields
of small ice floes (for which the mass loading model is a
good approximation) and with roughly ω2–ω2.5 damping in
continuous ice or fields of large ice floes. We return to this
fact in the discussion section.

4 Modelling results

4.1 Model set-up

We set up the DEM for conditions corresponding to those
from LS-WICE series 3000 (see Part 2). The ice sheet is 42 m
long, and three floe lengths Lx are considered: 0.5 m (num-
ber of floes Nf = 84), 1.5 m (Nf = 28), and 3.0 m (Nf = 14).
For each floe size, the model is run for several different com-
binations of the following parameters: the wave period T
(1.1, 1.2, 1.4, 1.5, 1.6, 1.8, and 2.0 s), incident wave ampli-
tude a0 (0.0125, 0.015, 0.02, and 0.025 m), drag coefficient
Csd (0.005, 0.01, 0.05, 0.1, 0.15, and 0.2), restitution coeffi-
cient ε (0.2, 0.4, 0.6, and 0.8), and initial floe–floe distance
df (0.005, 0.010, 0.020, and 0.050 m). In each model run, the
floes are initially placed along the x axis such that x1 = Lx/2
and xi+1 = xi+Lx + df for i = 2, . . .,Nf (tests with random
initial locations of the floes have shown that this aspect of the
set-up has no influence on the results). Additionally, for each
value of T , three values of wavenumber k and group velocity
cg were considered, computed from the EP, OW, and ML dis-
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Figure 1. Group velocity cg (a) and the ratio ω3/(cgtanh3
[kh]) (b) versus wave frequency f = ω/(2π), computed for thin laboratory

ice (test series 3000 from the LS-WICE experiment analysed in Part 2) and for field conditions with h= 1000 m, ρw = 1025 kg m−3,
ρi = 910 kg m−3, E = 6× 109 Pa, and hi = 1.5 m. The corresponding open water solutions are shown in black (note that the two black
curves overlap for f > 0.5 Hz). Green rectangles mark regions covered by the LS-WICE experiment.

persion relations. Thus, the parameter space considered has
seven dimensions.

As described in Part 2, the ice in LS-WICE was con-
strained horizontally by a floating boom and a sloping beach.
In DEM, an analogous effect is obtained by adding a lin-
ear spring force Fs to the first and last floe, with Fs,i(t)=

ks(xi(t)−xi(0)) for i = 1 and i =Nf. The value of the spring
constant ks was set to 9× 104 N m−1 (tests showed that the
value of ks does not have visible results on the simulated at-
tenuation, of interest in this study).

The time step 1t used in the simulations equaled 1×
10−4 s. In the algorithm (see Sect. 2.4), δ = 10−3 was used in
the convergence criterion, with n0 = 10 and nT = 5. The spa-
tial resolution in numerical integration of dissipation, used in
Eq. (19), was 1x = 0.01 m.

As already mentioned, the analysis presented in the re-
maining parts of this paper concentrates on the role of ice–
water drag; i.e. it is limited to results obtained without over-
wash, Sow = 0. Simulations with overwash are discussed in
Part 2.

4.2 Influence of the model parameters on simulated
wave attenuation

We begin exploring the model behaviour with an analysis of
the influence of the restitution coefficient ε on wave attenu-
ation. Obviously, by definition of ε, the lower its value, the
higher the fraction of kinetic energy of colliding objects that
is dissipated during collisions. However, these energy losses,
directly affecting the motion of the ice, do not automatically
lead to the attenuation of the energy of the waves. On the
contrary, as Fig. 2 clearly shows, the higher the ε, the lower

the wave amplitude. The mechanism behind this relationship,
described by Herman (2018) and mentioned in the Introduc-
tion, is related to enhanced relative ice–water velocities after
collisions, leading to enhanced stress and thus stronger dissi-
pation of wave energy.

Another aspect of the results immediately seen in Fig. 2 is
that in most cases the slope of the a(x) curve changes with
distance from the ice edge: da/dx is large close to the ice
edge, within a relatively narrow zone of very strong attenu-
ation, and becomes smaller further down-wave. This effect
is related to the rearrangement of the mean positions of the
floes within the space available to them. As in every forced
granular gas, the “atoms” tend to disperse from regions with
higher granular pressure to regions where the granular pres-
sure is lower. Thus, close to the ice edge, where collisions
are more energetic due to stronger forcing (higher wave am-
plitudes), the local ice concentration becomes slightly lower
and the floes accumulate further down-wave, in a densely
packed zone of ice concentration close to 100 %, i.e. with
floes in permanent contact with their neighbours (Fig. 3a).
The width of the collisional zone at the ice edge decreases
with increasing ε, and the above-mentioned change of slope
of the a(x) curve corresponds to the location of the bound-
ary between those two regions (see coloured dots in Figs. 2
and 3a). The two zones are, not surprisingly, characterized by
different balance of forces. In the compact region with per-
manent floe–floe contact, the wave-induced forces are bal-
anced by the contact forces, with drag force roughly 2 or-
ders of magnitude lower (Fig. 3b–d); close to the ice edge,
phase-averaged ice–water drag is still lower than the remain-
ing forces, but it contributes a significantly larger part to the
overall force balance. All these differences between the two

The Cryosphere, 13, 2887–2900, 2019 www.the-cryosphere.net/13/2887/2019/



A. Herman et al.: Wave energy attenuation in fields of colliding ice floes – Part 1 2895

Figure 2. Computed relative wave amplitude a/a0 for simulations with Lx = 0.5 m, T = 1.2 s, a0 = 0.0125 m, df = 0.005 m, and Csd =
0.05, with ML (a) and EP (b) dispersion relation. Colours correspond to different restitution coefficients ε; continuous black line shows the
curve computed from Eq. (25), with αc from Eq. (24). Dots mark locations where the phase-averaged floe–floe distance drops below 10−4 m
(see Fig. 3a), and black dashed lines originating from those points show corresponding solutions for compact ice.

regions are clearly seen in the time series of the energy dissi-
pation term Ssd (Fig. 4). For floes close to the ice edge, large
spikes in Ssd occur regularly after each collision. Floes far
from the ice edge experience very low, periodically varying
Ssd values related to small displacements from their average
positions. Between those two regions of relatively regular –
collisional or non-collisional – motion, the floes experience
irregular fluctuations of their mean position (not shown) and
associated periods with higher and lower collision rates, in
effect producing erratic temporal patterns of Ssd (red curve
in Fig. 4). Coming back to the wave attenuation, it is not sur-
prising that the simulated attenuation rates in the down-wave
high-concentration region are very close to those computed
analytically for motionless ice (dashed lines in Fig. 2).

It is also worth noting that the existence of the collisional
zone at the ice edge, producing strong attenuation, is directly
related to the fact that the ice edge position is fixed in space
– by the boom in the laboratory and by the additional spring
force in the model. Without that force, the floes drift grad-
ually in the up-wave direction (again, towards lower granu-
lar pressure) until the ice concentration drops enough so that
collisions become sporadic. We return to this issue in the dis-
cussion section.

As can be expected from the analysis in Sect. 2.3, the
dispersion relation has a very strong influence on the sim-
ulated attenuation rates (compare Fig. 2a and b). With all
other model parameters equal, the EP dispersion relation
will always lead to lower attenuation rates than ML. Thus,
at least two mechanisms contribute to stronger attenuation
when ice floes are small. First, dispersion in ice fields com-
posed of small floes is better described by the ML than by

the EP model. And, second, small floes undergo more vig-
orous collisions, with larger instantaneous accelerations and
more collisions per distance travelled by the wave. In an ex-
ample shown in Fig. 5, the ML model is likely more suitable
for small floes with Lx = 0.5 m, and the EP model is more
suitable for large floes with Lx = 3.0 m, so that the expected
difference in attenuation observed in these two situations can
be as large as between the dashed yellow and the continuous
blue line in Fig. 5.

The fact that the frequency and character of collisions
play a crucial role in shaping floe dynamics and wave en-
ergy dissipation in the region close to the ice edge means
that the ice concentration, and thus the floe–floe distances,
should have a visible influence on attenuation. This is indeed
the case (Fig. 6a): when df decreases, attenuation increases.
However, as can be seen for the results with short waves,
stronger attenuation close to the ice edge means that the
zone of strong attenuation becomes narrower so that further
down-wave, the relationship between df and a/a0 reverses (in
Fig. 6a, no analogous effect is present for the longer waves
with T = 1.8 s because the collisional zone extends in this
case over the whole model domain). Those examples illus-
trate how difficult it might be to “reconstruct” the attenuation
curves from measurements available only at a limited num-
ber of locations (as in the case discussed in Part 2) and how
careful one should be when interpreting those kinds of data.

Finally, it is worth stressing that the modelled wave atten-
uation in both regions is strongly dependent on the incident
wave amplitude a0 (Fig. 6b). In the collisional zone at the ice
edge, the wave amplitude decides on the surge amplitude of
the floes and thus on the occurrence and intensity of colli-
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Figure 3. Results of simulations with Lx = 0.5 m, T = 1.2 s, a0 = 0.0125 m, and df = 0.005 m, with ML dispersion relation (as in Fig. 2a):
mean floe–floe distance (a), mean |Fw| (b), mean |Fc| (c), and mean |Fsd| (d) for four values of restitution coefficient ε. In (a), black dashed
line shows the domain average df, and dots mark locations where the average floe–floe distance drops below 10−4 m.

sions. Further down-wave, the a(x) curve is described well
by Eq. (25); i.e. the attenuation rate is close to a0αc.

5 Discussion and conclusions

As noted recently by Meylan et al. (2018), the dependence
of the attenuation rate α on wave frequency follows directly
from the formulation of a given model, and therefore – if the
model does not properly reproduce the relevant processes –
its coefficients can be tuned to the observed attenuation at
one frequency only. Reversing this argument, the observed
functional forms of a(x) and α(f ) can be treated as sig-
natures of physical attenuation processes that have shaped
them. It is thus crucial to improve our understanding of how
different attenuation mechanisms influence a(x) and α(f ).
In this work, we concentrated on one of those mechanisms:

dissipation of wave energy due to ice–water drag. We used
DEM simulations and, in a limiting case of compact sea ice,
an analytical analysis, in order to investigate how ice–water
drag influences the dynamics of sea ice floes and the corre-
sponding attenuation of wave energy. Several aspects of the
results, mentioned in the text, are worth further discussion.

The DEM simulations predict a very distinctive pattern
of wave attenuation resulting from combined effects of ice–
water drag and collisions between ice floes. The results sug-
gest that intense collisions between ice floes can be expected
to occur only within a narrow zone close to the ice edge,
which is also a zone of lowered ice concentration and of very
strong attenuation – provided that the floes are not able to
drift in the up-wave direction. In natural conditions, forces
keeping the ice edge in place may include compressive stress
caused by wave reflection from the ice edge as well as wind
and/or average currents with sufficient velocity so that the
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Figure 4. Time series of the modulus of the wave energy dissi-
pation term |Ssd| in simulations with Lx = 0.5 m, T = 1.2 s, a0 =
0.0125 m,Csd = 0.05, ε = 0.6, and ML dispersion relation (see yel-
low curve in Fig. 2a), for three selected floes, located at 3, 12, and
30 m from the ice edge.

Figure 5. Computed relative wave amplitude a/a0 for simulations
with different floe sizes Lx (colours), with T = 1.4 s, a0 = 0.015 m,
df = 0.005 m, Csd = 0.05, and ε = 0.6, with EP (continuous lines)
and ML (dashed lines) dispersion relation.

forces exerted by them on the ice compensate for those re-
lated to increased granular pressure. It is interesting to note
that the elevated granular pressure can be sustained only by
a constant energy input from the waves; otherwise, inelastic
floe–floe collisions would lead not to increased, but to de-
creased, collision rates. This makes the situation very differ-
ent from the wind-forced sea ice studied by Herman (2011,
2012), where floes tended to accumulate in regions of intense
collisions, producing clusters with high ice concentration. In
the present case, thanks to the interplay with wave forcing,

the same basic mechanisms lead to the formation of the two
zones described in Sect. 4.2, with very different wave atten-
uation rates and collision patterns. Notably, also, if the ice
floes are small relative to the wavelength, very different at-
tenuation should be expected in situations with a confined ice
edge (strong ice–water drag due to floe collisions at high ice
concentration) and in situations with a “free” ice edge (no
collisions due to lowered ice concentration or floes able to
follow the motion of the water).

The fact that the floes tend to accumulate in the inner zone,
forming a semi-continuous ice cover with ice concentration
close to 100 % and limited horizontal ice motion, means that
– if dissipation due to ice–water drag is significant – the
expected attenuation rates within that zone should be close
to those computed analytically in Sect. 3. From a practical
point of view, it substantially simplifies the situation, elim-
inating, from the set of relevant variables, the variables re-
lated to collisions. Crucially, as illustrated in Sect. 3, the be-
haviour of α(ω) in this case depends very strongly on the
dispersion relation, with much weaker dissipation in sea ice
composed of large ice floes, behaving as elastic plates, and
stronger dissipation in sea ice composed of small floes, be-
having as rigid “mass points”. It must be stressed here that
the strong influence of the dispersion relation on α(ω) is not
limited to the dissipation mechanisms discussed in this paper.
As the left-hand side of Eq. (9) has the form d(cgEw)/dx,
the value of c−1

g will always influence the energy attenua-
tion, contributing to stronger attenuation in small floes (when
cg is relatively low and decreases with increasing wave fre-
quency) than in large floes (when cg is larger and increases
with increasing frequency; Fig. 1a). In many studies these
effects are not taken into account and open-water disper-
sion relation is assumed (e.g. Meylan et al., 2018), although
several observations, including those analysed by Liu and
Mollo-Christensen (1988) or Sutherland and Rabault (2016),
show the influence of floe size on wave propagation speed
(in the LS-WICE experiment discussed in Part 2, for which
the present DEM was configured, decreasing wavenumbers
with increasing floe size were observed, as analysed by
Cheng et al., 2018). The example of attenuation due to ice–
water drag, discussed in this work, suggests that even small
changes of cg may lead to noticeable changes of α. In the
inner zone far from the ice edge, where the floes tend to be
larger and therefore α should be close to αc,ep, the present
model predicts a power-law tail in the relation α(ω), with
the power m typically between 2 and 2.5 depending on ice
properties, i.e. substantially lower than m= 4 for the open
water dispersion relation. This is a very important aspect of
our results, as the values 2–2.5 are in agreement with many
observations, although, obviously, it does not mean that the
analysed mechanism significantly contributes to attenuation
in real sea ice.

It is also worth noting that the influence of ice–water drag
on wave energy attenuation depends very strongly on the
drag law used. If, for example, a linear drag law τw ∼ urel is
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Figure 6. Computed relative wave amplitude a/a0 for simulations with different average floe–floe distance df (a) and different incident wave
amplitude a0 (b), for Lx = 0.5 m, a0 = 0.015 m, df = 0.005 m, Csd = 0.05, and ε = 0.6, for two different wave periods.

used instead of the quadratic law (Eq. 15), exponential atten-
uation a(x)= a0 exp[−αc,lx] is obtained instead of Eq. (25),
with αc,l proportional to ω2/(cgtanh2

[kh]); i.e. the increase
in the attenuation coefficient αc,l with ω is slower than pre-
dicted by the model described earlier. This illustrates that
both the shape of the attenuation curve a(x) and the attenu-
ation coefficients are very sensitive to the formulation of the
dissipation term in the energy transport equation (Eq. 9). On
the other hand, any model with a dissipative force quadrat-
ically dependent on relative ice–water velocity will exhibit
a similar behaviour. For example, replacing the drag coeffi-
cient Csd, here representing skin drag, with a form drag co-
efficient, and replacing integration over the bottom surface
of the floes in Eq. (13) with integration over their vertical
walls, should not change the general attenuation behaviour
described above.

A very important limitation of the model used here is the
fact that it takes into account only the transmitted propagat-
ing component (T0 in the notation of Kohout et al., 2007) of
the wave motion. As our analysis in Part 2 shows, the con-
tribution of T0 to the total wave amplitude in the LS-WICE
experiment is variable and strongly dependent on the ratio of
floe size to wavelength. From the point of view of the ice–
water drag, discussed in this paper, it is important to keep
in mind that the additional modes – especially the propagat-
ing damped modes (T−2, T−1, R−2, and R−1), which might
have amplitudes comparable with T0 – modify the spatial and
temporal variability in uw, thus modifying the instantaneous
and phase-averaged urel and Ssd. It remains to be investigated
how large those changes might be in different conditions.
Moreover, the damped modes increase the water velocities
close to the edges of the floes as well as the amplitude of the
vertical motion of floes’ edges (the total amplitude is a sum of

the amplitude of the propagating components, constant over
the length of the floe, and the amplitude of the damped com-
ponents, decreasing from floe edges towards its inner parts).
Thus, the presence of the damped modes might modify over-
wash and, combined with floe collisions, contribute to the en-
hancement of turbulent mixing at floe boundaries. Although
analysing interrelationships between those processes in full
detail will require much more advanced models and obser-
vations, an initial step in that direction can be done by ex-
tending the present DEM so that more realistic wave forcing
can be used. The same is true with another limitation of this
study – the fact that both the DEM and the laboratory set-
up discussed in Part 2 are one-dimensional. Estimating the
strength of additional effects in situations with directional
wave energy spectra and fully two-dimensional floe–floe col-
lisions, scattering, etc., is extremely difficult based on the
present one-dimensional simulations and would require ex-
tending the existing coupled model to two dimensions.

Code availability. The code of the DESIgn model is freely avail-
able at https://herman.ocean.ug.edu.pl/LIGGGHTSseaice.html (last
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responding author.
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