Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-2835-2019
https://doi.org/10.5194/tc-13-2835-2019
Research article
 | 
07 Nov 2019
Research article |  | 07 Nov 2019

Detecting dynamics of cave floor ice with selective cloud-to-cloud approach

Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay

Related authors

TESTING OF V3.SUN MODULE PROTOTYPE FOR SOLAR RADIATION MODELLING ON 3D OBJECTS WITH COMPLEX GEOMETRIC STRUCTURE
J. Kaňuk, S. Zubal, J. Šupinský, J. Šašak, M. Bombara, V. Sedlák, M. Gallay, J. Hofierka, and K. Onačillová
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W15, 35–40, https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019,https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019, 2019
Mapping urban greenery to create the optimal cooling effect model against solar radiation under the conditions of a smart city
Vladimír Sedlák, Katarína Onačillová, Michal Gallay, Jaroslav Hofierka, Ján Kaňuk, Ján Šašak, and Jozef Šupinský
Abstr. Int. Cartogr. Assoc., 1, 326, https://doi.org/10.5194/ica-abs-1-326-2019,https://doi.org/10.5194/ica-abs-1-326-2019, 2019
HIGH-RESOLUTION URBAN GREENERY MAPPING FOR MICRO-CLIMATE MODELLING BASED ON 3D CITY MODELS
J. Hofierka, M. Gallay, J. Kaňuk, J. Šupinský, and J. Šašak
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W7, 7–12, https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017,https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017, 2017

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023,https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Climatic control on seasonal variations of glacier surface velocity
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
EGUsphere, https://doi.org/10.5194/egusphere-2022-1035,https://doi.org/10.5194/egusphere-2022-1035, 2022
Short summary
Glacier extraction based on high-spatial-resolution remote-sensing images using a deep-learning approach with attention mechanism
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022,https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022,https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law
Flavien Beaud, Saif Aati, Ian Delaney, Surendra Adhikari, and Jean-Philippe Avouac
The Cryosphere, 16, 3123–3148, https://doi.org/10.5194/tc-16-3123-2022,https://doi.org/10.5194/tc-16-3123-2022, 2022
Short summary

Cited articles

Avian, M. and Bauer, A.: First results on monitoring glacier dynamics with the aid of Terrestrial Laser Scanning on Pasterze Glacier (Hohe Tauern, Austria), Grazer Schr. Geogr. Raumf., 41, 27–36, 2006. 
Avian, M., Kellerer-Pirklbauer, A., and Lieb, G.: Geomorphic consequences of rapid deglaciation at Pasterze glacier, Hohe Tauern range, Austria, between 2010 and 2013 based on repeated terrestrial laser scanning data, Geomorphology, 310, 1–14, https://doi.org/10.1016/j.geomorph.2018.02.003, 2018. 
Barnhart, B. T. and Crosby, T. B.: Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska, Remote Sens., 5, 2813–2837, https://doi.org/10.3390/rs5062813, 2013. 
Bauer, A., Paar, G., and Kaufmann, V.: Terrestrial laser scanning for rock glacier monitoring, in: Permafrost, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., Taylor and Francis, London, 55–60, 2003. 
Bella, P.: Chapter 4.2 – Ice surface morphology, in: Ice Caves, edited by: Perşoiu, A. and Lauritzen, S. E., Elsevier, 69–96, https://doi.org/10.1016/B978-0-12-811739-2.00029-2, 2018. 
Download
Short summary
Cave ice formations can be considered an indicator of long-term changes in the landscape. Using terrestrial laser scanning we generated a time series database of a 3-D cave model. We present a novel approach toward registration of scan missions into a unified coordinate system and methodology for detection of cave floor ice changes. We demonstrate the results of the ice dynamics monitoring correlated with meteorological observations in the Silická ľadnica cave situated in the Slovak Karst.