Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-2835-2019
https://doi.org/10.5194/tc-13-2835-2019
Research article
 | 
07 Nov 2019
Research article |  | 07 Nov 2019

Detecting dynamics of cave floor ice with selective cloud-to-cloud approach

Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay

Related authors

TESTING OF V3.SUN MODULE PROTOTYPE FOR SOLAR RADIATION MODELLING ON 3D OBJECTS WITH COMPLEX GEOMETRIC STRUCTURE
J. Kaňuk, S. Zubal, J. Šupinský, J. Šašak, M. Bombara, V. Sedlák, M. Gallay, J. Hofierka, and K. Onačillová
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W15, 35–40, https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019,https://doi.org/10.5194/isprs-archives-XLII-4-W15-35-2019, 2019
Mapping urban greenery to create the optimal cooling effect model against solar radiation under the conditions of a smart city
Vladimír Sedlák, Katarína Onačillová, Michal Gallay, Jaroslav Hofierka, Ján Kaňuk, Ján Šašak, and Jozef Šupinský
Abstr. Int. Cartogr. Assoc., 1, 326, https://doi.org/10.5194/ica-abs-1-326-2019,https://doi.org/10.5194/ica-abs-1-326-2019, 2019
HIGH-RESOLUTION URBAN GREENERY MAPPING FOR MICRO-CLIMATE MODELLING BASED ON 3D CITY MODELS
J. Hofierka, M. Gallay, J. Kaňuk, J. Šupinský, and J. Šašak
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W7, 7–12, https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017,https://doi.org/10.5194/isprs-archives-XLII-4-W7-7-2017, 2017

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024,https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024,https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Lake ice break-up in Greenland: timing and spatiotemporal variability
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024,https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
The Pléiades Glacier Observatory: high resolution digital elevation models and ortho-imagery to monitor glacier change
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquin Munoz Cobo Belart, Fanny Brun, Liss Marie Andreassen, Brian Menounos, and Charlotte Blondel
EGUsphere, https://doi.org/10.5194/egusphere-2024-250,https://doi.org/10.5194/egusphere-2024-250, 2024
Short summary

Cited articles

Avian, M. and Bauer, A.: First results on monitoring glacier dynamics with the aid of Terrestrial Laser Scanning on Pasterze Glacier (Hohe Tauern, Austria), Grazer Schr. Geogr. Raumf., 41, 27–36, 2006. 
Avian, M., Kellerer-Pirklbauer, A., and Lieb, G.: Geomorphic consequences of rapid deglaciation at Pasterze glacier, Hohe Tauern range, Austria, between 2010 and 2013 based on repeated terrestrial laser scanning data, Geomorphology, 310, 1–14, https://doi.org/10.1016/j.geomorph.2018.02.003, 2018. 
Barnhart, B. T. and Crosby, T. B.: Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska, Remote Sens., 5, 2813–2837, https://doi.org/10.3390/rs5062813, 2013. 
Bauer, A., Paar, G., and Kaufmann, V.: Terrestrial laser scanning for rock glacier monitoring, in: Permafrost, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., Taylor and Francis, London, 55–60, 2003. 
Bella, P.: Chapter 4.2 – Ice surface morphology, in: Ice Caves, edited by: Perşoiu, A. and Lauritzen, S. E., Elsevier, 69–96, https://doi.org/10.1016/B978-0-12-811739-2.00029-2, 2018. 
Download
Short summary
Cave ice formations can be considered an indicator of long-term changes in the landscape. Using terrestrial laser scanning we generated a time series database of a 3-D cave model. We present a novel approach toward registration of scan missions into a unified coordinate system and methodology for detection of cave floor ice changes. We demonstrate the results of the ice dynamics monitoring correlated with meteorological observations in the Silická ľadnica cave situated in the Slovak Karst.