Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1565-2019
https://doi.org/10.5194/tc-13-1565-2019
Research article
 | 
04 Jun 2019
Research article |  | 04 Jun 2019

Estimation of turbulent heat flux over leads using satellite thermal images

Meng Qu, Xiaoping Pang, Xi Zhao, Jinlun Zhang, Qing Ji, and Pei Fan

Related authors

INTER-COMPARISONS AMONG PASSIVE MICROWAVE SEA ICE CONCENTRATION PRODUCTS FROM FY-3D MWRI AND AMSR2
Y. Chen, X. Zhao, M. Qu, Z. Cheng, X. Pang, and Q. Ji
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 861–867, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-861-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-861-2020, 2020

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary

Cited articles

Alam, A. and Curry, J. A.: Determination of surface turbulent fluxes over leads in Arctic sea ice, J. Geophys. Res.-Oceans, 102, 3331–3343, 1997. 
Alam, A. and Curry, J. A.: Evolution of new ice and turbulent fluxes over freezing winter leads, J. Geophys. Res.-Oceans, 103, 15783–15802, 1998. 
Andreas, E. L. and Cash, B. A.: Convective heat transfer over wintertime leads and polynyas, J. Geophys. Res.-Oceans, 104, 25721–25734, 1999. 
Andreas, E. L. and Murphy, B.: Bulk transfer coefficients for heat and momentum over leads and polynyas, J. Phys. Oceanogr., 16, 1875–1883, 1986. 
Andreas, E. L., Paulson, C. A., William, R. M., Lindsay, R. W., and Businger, J. A.: The turbulent heat flux from Arctic leads, Bound.-Lay. Meteorol., 17, 57–91, 1979. 
Download
Short summary
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining bulk formulae and a fetch-limited model with surface temperature from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) images, we found small leads account for 25 % of the turbulent heat flux, due to its large total area. Estimated turbulent heat flux is larger from TIRS than that from MODIS with a coarser resolution and larger using a fetch-limited model than that using bulk formulae.
Share