Articles | Volume 13, issue 6
https://doi.org/10.5194/tc-13-1565-2019
https://doi.org/10.5194/tc-13-1565-2019
Research article
 | 
04 Jun 2019
Research article |  | 04 Jun 2019

Estimation of turbulent heat flux over leads using satellite thermal images

Meng Qu, Xiaoping Pang, Xi Zhao, Jinlun Zhang, Qing Ji, and Pei Fan

Related authors

INTER-COMPARISONS AMONG PASSIVE MICROWAVE SEA ICE CONCENTRATION PRODUCTS FROM FY-3D MWRI AND AMSR2
Y. Chen, X. Zhao, M. Qu, Z. Cheng, X. Pang, and Q. Ji
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 861–867, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-861-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-861-2020, 2020

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023,https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023,https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023,https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023,https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary

Cited articles

Alam, A. and Curry, J. A.: Determination of surface turbulent fluxes over leads in Arctic sea ice, J. Geophys. Res.-Oceans, 102, 3331–3343, 1997. 
Alam, A. and Curry, J. A.: Evolution of new ice and turbulent fluxes over freezing winter leads, J. Geophys. Res.-Oceans, 103, 15783–15802, 1998. 
Andreas, E. L. and Cash, B. A.: Convective heat transfer over wintertime leads and polynyas, J. Geophys. Res.-Oceans, 104, 25721–25734, 1999. 
Andreas, E. L. and Murphy, B.: Bulk transfer coefficients for heat and momentum over leads and polynyas, J. Phys. Oceanogr., 16, 1875–1883, 1986. 
Andreas, E. L., Paulson, C. A., William, R. M., Lindsay, R. W., and Businger, J. A.: The turbulent heat flux from Arctic leads, Bound.-Lay. Meteorol., 17, 57–91, 1979. 
Download
Short summary
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining bulk formulae and a fetch-limited model with surface temperature from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) images, we found small leads account for 25 % of the turbulent heat flux, due to its large total area. Estimated turbulent heat flux is larger from TIRS than that from MODIS with a coarser resolution and larger using a fetch-limited model than that using bulk formulae.