Articles | Volume 13, issue 3
The Cryosphere, 13, 1051–1071, 2019
https://doi.org/10.5194/tc-13-1051-2019
The Cryosphere, 13, 1051–1071, 2019
https://doi.org/10.5194/tc-13-1051-2019
Research article
02 Apr 2019
Research article | 02 Apr 2019

A multi-season investigation of glacier surface roughness lengths through in situ and remote observation

Noel Fitzpatrick et al.

Related authors

Evaluation of dynamically downscaled near-surface mass and energy fluxes for three mountain glaciers, British Columbia, Canada
Mekdes Ayalew Tessema, Valentina Radić, Brian Menounos, and Noel Fitzpatrick
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-154,https://doi.org/10.5194/tc-2018-154, 2018
Preprint withdrawn
Short summary
Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada
Valentina Radić, Brian Menounos, Joseph Shea, Noel Fitzpatrick, Mekdes A. Tessema, and Stephen J. Déry
The Cryosphere, 11, 2897–2918, https://doi.org/10.5194/tc-11-2897-2017,https://doi.org/10.5194/tc-11-2897-2017, 2017
Short summary

Related subject area

Discipline: Glaciers | Subject: Atmospheric Interactions
The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022,https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
The distribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern Greenland) and interannual climatic controls
Jenny V. Turton, Philipp Hochreuther, Nathalie Reimann, and Manuel T. Blau
The Cryosphere, 15, 3877–3896, https://doi.org/10.5194/tc-15-3877-2021,https://doi.org/10.5194/tc-15-3877-2021, 2021
Short summary
Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021,https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Spatio-temporal flow variations driving heat exchange processes at a mountain glacier
Rebecca Mott, Ivana Stiperski, and Lindsey Nicholson
The Cryosphere, 14, 4699–4718, https://doi.org/10.5194/tc-14-4699-2020,https://doi.org/10.5194/tc-14-4699-2020, 2020
Short summary
Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020,https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary

Cited articles

Anderson, B., Mackintosh, A., Stumm, D., and Fitzsimons, S. J.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, https://doi.org/10.3189/002214310791190929, 2010. 
Andreas, E. L.: A Theory for the Scalar Roughness and the Scalar Transfer Coefficients over Snow and Sea Ice, Bound.-Lay. Meteorol., 38, 159–184, https://doi.org/10.1007/BF00121562, 1987. 
Andreas, E. L., Persson, P. O. G., Jordan, R. E., Horst, T. W., Guest, P. S., Grachev, A. A., and Fairall, C. W.: Parameterizing Turbulent Exchange over Sea Ice in Winter, J. Hydrometeorol., 11, 87–104, https://doi.org/10.1175/2009JHM1102.1, 2010. 
Arnold, N. S. and Rees, G.: Self-similarity in glacier surface characteristics, J. Glaciol., 49, 547–554, https://doi.org/10.3189/172756503781830368, 2003. 
Aubinet, M.: Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem, Ecol. Appl., 18, 1368–1378, https://doi.org/10.1890/06-1336.1, 2008. 
Download
Short summary
Measurements of surface roughness are rare on glaciers, despite being an important control for heat exchange with the atmosphere and surface melt. In this study, roughness values were determined through measurements at multiple locations and seasons and found to vary across glacier surfaces and to differ from commonly assumed values in melt models. Two new methods that remotely determine roughness from digital elevation models returned good performance and may facilitate improved melt modelling.