Articles | Volume 12, issue 9
The Cryosphere, 12, 2941–2953, 2018
https://doi.org/10.5194/tc-12-2941-2018
The Cryosphere, 12, 2941–2953, 2018
https://doi.org/10.5194/tc-12-2941-2018
Research article
14 Sep 2018
Research article | 14 Sep 2018

A scatterometer record of sea ice extents and backscatter: 1992–2016

Maria Belmonte Rivas et al.

Related authors

Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT
Maria Belmonte Rivas and Ad Stoffelen
Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019,https://doi.org/10.5194/os-15-831-2019, 2019
Short summary
OMI tropospheric NO2 profiles from cloud slicing: constraints on surface emissions, convective transport and lightning NOx
M. Belmonte Rivas, P. Veefkind, H. Eskes, and P. Levelt
Atmos. Chem. Phys., 15, 13519–13553, https://doi.org/10.5194/acp-15-13519-2015,https://doi.org/10.5194/acp-15-13519-2015, 2015
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
M. Belmonte Rivas, P. Veefkind, F. Boersma, P. Levelt, H. Eskes, and J. Gille
Atmos. Meas. Tech., 7, 2203–2225, https://doi.org/10.5194/amt-7-2203-2014,https://doi.org/10.5194/amt-7-2203-2014, 2014
Retrieving hurricane wind speeds using cross-polarization C-band measurements
G.-J. van Zadelhoff, A. Stoffelen, P. W. Vachon, J. Wolfe, J. Horstmann, and M. Belmonte Rivas
Atmos. Meas. Tech., 7, 437–449, https://doi.org/10.5194/amt-7-437-2014,https://doi.org/10.5194/amt-7-437-2014, 2014

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022,https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022,https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022,https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022,https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022,https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary

Cited articles

Aaboe, S., Breivik, L. A., and Eastwood, S.: ATBD for the OSI SAF Global Sea Ice Edge and Type Product, OSI SAF report CDOP2/MET-Norway/SCI/MA/208, http://osisaf.met.no/docs/osisaf_cdop2_ss2_atbd_sea-ice-edge_type_v1p2.pdf (last access: 4 September 2018), 2015.
Aaboe, S., Breivik, L. A., Eastwood, S., and Sorensen, A.: Global Sea Ice Edge and Type Validation Report, OSI SAF report CDOP2/MET-Norway/SCI/RP/224, http://osisaf.met.no/docs/osisaf_cdop2_ss2_valrep_sea-ice-edge-type_v2p1.pdf (last access: 4 September 2018), 2016.
Barber, D. G. and Thomas, A.: The influence of cloud cover on the radiation budget, physical properties and microwave scatterin coefficients of first-year and multi-year ice, IEEE T. Geosci. Remote Sens., 36, 38-50, 1998.
Belmonte Rivas, M. and Stoffelen, A.: “Near Real-Time sea ice discrimination using SeaWinds on QuikSCAT”, OSI SAF Visiting Scientist Report, SAF/OSI/CDOP/KNMI/TEC/TN/168, available at: https://cdn.knmi.nl/system/data_center_publications/files/000/068/084/original/sea_ice_osi_saf_final_report.pdf?1495621021 (last access: 4 September 2018), 2009.
Belmonte Rivas, M. and Stoffelen, A.: New Bayesian algorithm for sea ice detection with QuikSCAT, IEEE T. Geosci. Remote Sens., 49, 1894–1901, 2011.
Download
Short summary
We provide a novel record of scatterometer sea ice extents and backscatter that complements the passive microwave products nicely, particularly for the correction of summer melt errors. The sea ice backscatter maps help differentiate between seasonal and perennial Arctic ice classes, and between second-year and older multiyear ice, revealing the emergence of SY ice as the dominant perennial ice type after the record loss in 2007 and attesting to its use as a proxy for ice thickness.