Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 12, issue 4
The Cryosphere, 12, 1307–1329, 2018
https://doi.org/10.5194/tc-12-1307-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 1307–1329, 2018
https://doi.org/10.5194/tc-12-1307-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Apr 2018

Research article | 12 Apr 2018

Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

Nicholas C. Wright and Chris M. Polashenski

Related authors

Observations of Sea Ice Melt from Operation IceBridge Imagery
Nicholas C. Wright, Chris M. Polashenski, Scott T. McMichael, and Ross A. Beyer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-288,https://doi.org/10.5194/tc-2019-288, 2019
Revised manuscript under review for TC
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, and Rasmus Tonboe
The Cryosphere, 14, 2469–2493, https://doi.org/10.5194/tc-14-2469-2020,https://doi.org/10.5194/tc-14-2469-2020, 2020
Short summary
Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada
Ron R. Togunov, Natasha J. Klappstein, Nicholas J. Lunn, Andrew E. Derocher, and Marie Auger-Méthé
The Cryosphere, 14, 1937–1950, https://doi.org/10.5194/tc-14-1937-2020,https://doi.org/10.5194/tc-14-1937-2020, 2020
Short summary
Combining TerraSAR-X and time-lapse photography for seasonal sea ice monitoring: the case of Deception Bay, Nunavik
Sophie Dufour-Beauséjour, Anna Wendleder, Yves Gauthier, Monique Bernier, Jimmy Poulin, Véronique Gilbert, Juupi Tuniq, Amélie Rouleau, and Achim Roth
The Cryosphere, 14, 1595–1609, https://doi.org/10.5194/tc-14-1595-2020,https://doi.org/10.5194/tc-14-1595-2020, 2020
Short summary
Brief Communication: Mesoscale and submesoscale dynamics of marginal ice zone from sequential SAR observations
Igor E. Kozlov, Evgeny V. Plotnikov, and Georgy E. Manucharyan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-126,https://doi.org/10.5194/tc-2020-126, 2020
Preprint under review for TC
Short summary
Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean
Babula Jena and Anilkumar N. Pillai
The Cryosphere, 14, 1385–1398, https://doi.org/10.5194/tc-14-1385-2020,https://doi.org/10.5194/tc-14-1385-2020, 2020
Short summary

Cited articles

Arntsen, A. E., Song, A. J., Perovich, D. K., and Richter-Menge, J. A.: Observations of the summer breakup of an Arctic sea ice cover, Geophys. Res. Lett., 42, 8057–8063, https://doi.org/10.1002/2015GL065224, 2015.
Blaschke, T.: Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens., 65, 2–16, https://doi.org/10.1016/j.isprsjprs.2009.06.004, 2010.
Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., and Tiede, D.: Geographic Object-Based Image Analysis – Towards a new paradigm, ISPRS J. Photogramm. Remote Sens., 87, 180–191, https://doi.org/10.1016/j.isprsjprs.2013.09.014, 2014.
Breiman, L.: Bagging Predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1023/A:1018054314350, 1996.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Publications Copernicus
Download
Short summary
Satellites, planes, and drones capture thousands of images of the Arctic sea ice cover each year. However, few methods exist to reliably and automatically process these images for scientifically usable information. In this paper, we take the next step towards a community standard for analyzing these images by presenting an open-source platform able to accurately classify sea ice imagery into several important surface types.
Satellites, planes, and drones capture thousands of images of the Arctic sea ice cover each...
Citation