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Abstract. Snow, ice, and melt ponds cover the surface of the
Arctic Ocean in fractions that change throughout the sea-
sons. These surfaces control albedo and exert tremendous
influence over the energy balance in the Arctic. Increas-
ingly available meter- to decimeter-scale resolution optical
imagery captures the evolution of the ice and ocean surface
state visually, but methods for quantifying coverage of key
surface types from raw imagery are not yet well established.
Here we present an open-source system designed to provide a
standardized, automated, and reproducible technique for pro-
cessing optical imagery of sea ice. The method classifies sur-
face coverage into three main categories: snow and bare ice,
melt ponds and submerged ice, and open water. The method
is demonstrated on imagery from four sensor platforms and
on imagery spanning from spring thaw to fall freeze-up. Tests
show the classification accuracy of this method typically ex-
ceeds 96 %. To facilitate scientific use, we evaluate the mini-
mum observation area required for reporting a representative
sample of surface coverage. We provide an open-source dis-
tribution of this algorithm and associated training datasets
and suggest the community consider this a step towards stan-
dardizing optical sea ice imagery processing. We hope to en-
courage future collaborative efforts to improve the code base
and to analyze large datasets of optical sea ice imagery.

1 Introduction

The surface of the sea ice–ocean system exhibits many dif-
ferent forms. Snow, ice, ocean, and melt ponds cover the sur-
face in fractions that change throughout the seasons. The rel-
ative fractions of these surfaces covering the Arctic ocean

are undergoing substantial change due to rapid loss of sea
ice (Stroeve et al., 2012), increase in the duration of melt
(Markus et al., 2009; Stroeve et al., 2014), decrease in sea
ice age (Maslanik et al., 2011), and decrease in sea ice thick-
ness (Kwok and Rothrock, 2009; Laxon et al., 2013) over
recent decades. As a whole, the changes are reducing albedo
and enhancing the absorption of solar radiation, triggering
an ice albedo feedback (Curry et al., 1995; Perovich et al.,
2008; Pistone et al., 2014). Large-scale remote sensing has
been instrumental in documenting the ongoing change in ice
extent (Parkinson and Comiso, 2013), thickness (Kurtz et al.,
2013; Kwok and Rothrock, 2009; Laxon et al., 2013), and
surface melt state (Markus et al., 2009). An increasing fo-
cus on improving prediction of future sea ice and climate
states, however, has also created substantial interest in better
observing, characterizing, and modeling the processes that
drive changes in albedo-relevant sea ice surface conditions
such as melt pond formation, which occur at smaller length
scales. For these, observations that resolve surface conditions
explicitly are needed to understand the underlying causes of
the seasonal and spatial evolution of albedo in a more sophis-
ticated way.

Explicitly sensing the key aspects of the sea ice surface,
including melt pond coverage, degree of deformation, floe
size, and lead distributions, requires evaluating the surface
at meter to decimeter scale resolution. Variability in the spa-
tial coverage and morphology of these surface characteris-
tics, however, occurs over hundreds of meters to tens of kilo-
meters. Estimates of aggregate-scale surface coverage frac-
tion must therefore be made at high resolution over sample
domains of many square kilometers. Quantifying the relative
abundance of surface types over domains of multi-kilometer
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Figure 1. Examples of imagery from each of the four imaging plat-
forms that we seek to classify in this study. Each type of imagery
has either a different spatial resolution or different levels spectral
information available.

scale from manned ground campaigns is both time consum-
ing and impractical. Remote sensing provides a more viable
approach for studying these multi-kilometer areas. High-
resolution optical imagery (e.g., Fig. 1) visually captures the
surface features of interest, but the methods for analyzing this
imagery remain under-developed.

The need for remote sensing methods enabling quantifi-
cation of meter-scale sea ice surface characteristics has been
well recognized, and efforts have been made to address it.
Recent developments in remote sensing of sea ice surface
conditions fall into two categories: (1) methods using low–
medium resolution satellite imagery (i.e., having pixel sizes
larger than the typical ice surface feature size) with spec-
tral un-mixing type algorithms to derive aggregate measures
of sub-pixel phenomena (e.g., for melt ponds Markus et al.,
2003; Rösel et al., 2012; Rösel and Kaleschke, 2011; Tschudi
et al., 2008) and (2) methods using higher-resolution satel-
lite or airborne imagery (i.e., having pixel size smaller than
the typical scale of ice surface features) that is capable of
explicitly resolving features (e.g., Arntsen et al., 2015; Fet-
terer and Untersteiner, 1998; Inoue et al., 2008; Kwok, 2014;
Lu et al., 2010; Miao et al., 2015; Perovich et al., 2002b;
Renner et al., 2014; Webster et al., 2015). The first category,
those derived from low–medium resolution imagery, have
notable strengths in their frequent sampling and basin-wide
coverage. They cannot, however, provide detailed statistics

on the morphology of surface features necessary for assess-
ing our process-based understanding and have substantial un-
certainty due to ambiguity in spectral signal un-mixing. The
second category – observations at high resolutions which ex-
plicitly resolve surface properties – can provide these de-
tailed statistics but were historically limited by a dearth of
data acquisitions. Recent increases in imagery availability
from formerly classified defense (Kwok, 2014) or commer-
cial satellites (e.g., DigitalGlobe), and increases in manned
flights over the Arctic (e.g., IceBridge, SIZRS) have substan-
tially reduced this constraint for optical imagery. While high-
resolution imagery still does not provide basin-wide cover-
age, likely increases in collection of imagery from UAVs
(DeMott and Hill, 2016) and increases in satellite imag-
ing bandwidth (e.g., DigitalGlobe WorldView 4 launched in
2016) suggest that availability of high-resolution imagery
will continue to increase.

Processing high-resolution sea ice imagery to derive use-
ful metrics quantifying surface state, however, remains a ma-
jor hurdle. Recent years have seen numerous publications
demonstrating the success of various processing techniques
for optical imagery of sea ice on limited test cases (e.g., In-
oue et al., 2008; Kwok, 2014; Lu et al., 2010; Miao et al.,
2015; Perovich et al., 2002b; Renner et al., 2014; Webster
et al., 2015). None of these techniques, however, have been
adopted as a standard or been used to produce large-scale
datasets, and validation has been limited. Furthermore, no
single method has been used to process data from multi-
ple sensor platforms or documented and released for wide-
spread community use. These issues must be addressed to
enable in large-scale production-type image processing and
use of high-resolution imagery as a sea ice monitoring tool.

A unique aspect of high-resolution sea ice imagery
datasets, which differs from most satellite remote sensing,
is the quantity of image sources and data owners. Distributed
collection and data ownership means centralized processing
of imagery to produce a single product is unlikely. Instead,
we believe that distributed processing by dataset owners is
more likely and the community therefore has a substantial
need for a shared, standard processing protocol. Successful
creation of such a processing protocol would increase im-
agery analysis and result in the production of datasets suit-
able for ingestion by models to validate surface process pa-
rameterizations. In this paper, we assess previous publica-
tions detailing image processing methods for remote sensing
and present a novel scheme that builds from the strengths and
lessons of prior efforts. Our resulting algorithm, the Open
Source Sea-ice Processing (OSSP) algorithm, is presented as
a step toward addressing the community need for a standard-
ized methodology and released in an open-source implemen-
tation for use and improvement by the community.

We began with three primary design goals that guided our
development of the image processing scheme. The method
must (1) have a fully automatic workflow and have a low
barrier to entry for new users, (2) produce accurate, con-
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sistent results in a standardized output format, and (3) be
able to produce equivalent geophysical parameters from a
range of disparate image acquisition methods. To meet these
goals, we have packaged OSSP in a user-friendly format,
with clear documentation for start-up. We include a set of
default parameters that should meet most user needs, per-
mitting processing of pre-defined image types with minimal
setup. The algorithm parameters are tunable to allow more
advanced users to tailor the method to their specific imagery
input. We chose an open-source format to enhance the abil-
ity for the community to explore and improve the code rela-
tive to commercial software. Herein, we discuss how we ar-
rived at the particular technique we use, and why it is su-
perior to some other possible mechanisms. We then demon-
strate the ability of this algorithm to analyze imagery of dis-
parate sources by showing results from high-resolution Dig-
italGlobe WorldView satellite imagery in both panchromatic
and pansharpened formats, aerial sRGB (standard red, green,
blue) imagery, and NASA Operation IceBridge DMS (Digi-
tal Mapping System) optical imagery. In this paper, we clas-
sify imaged areas into three surface types: snow and ice, melt
ponds and submerged ice, and open water. The algorithm is,
however, suitable for classifying any number of categories,
should a user be interested in different surface types, and
might be adapted for use on imagery of other surface types.

2 Algorithm design

Two core decisions were faced in the design of this image
classification scheme: (1) whether to analyze the image by
individual pixels or to analyze objects constructed of similar,
neighboring pixels, and (2) which algorithm to use for the
classification of these image units.

Prior work in terrestrial remote sensing applications
has shown that object-based classifications are more accu-
rate than single pixel classifications when analyzing high-
resolution imagery (Blaschke, 2010; Blaschke et al., 2014;
Duro et al., 2012; Yan et al., 2006). In this case, “high res-
olution” has a specific definition dependent on the relation-
ship between the size of pixels and objects of interest. An
image is high resolution when surface features of interest
are substantially larger than pixel resolution and therefore
are composed of many pixels. In such imagery, objects, or
groups of pixels constructed to contain only similar pixels
(i.e., a single surface type), can be analyzed as a set. The
meter–decimeter-resolution imagery meets this definition for
features like melt ponds and ice floes. Object-based classi-
fication enables an algorithm to extract information about
image texture and spatial correlation within the pixel group,
information that is not available in single pixel-based classi-
fications and can enhance accuracy of surface type discrim-
ination. Furthermore, object-based classifications are much
better at preserving the size and shape of surface cover re-
gions. Classification errors of individual pixel schemes tend

to produce a “speckled” appearance in the image classifica-
tion with incorrect pixels scattered across the image. Errors
in object-based classifications, meanwhile, appear as entire
objects that are mislabeled (Duro et al., 2012). Since our in-
tent is not only to process high-resolution imagery and pro-
duce measurements of the areal fractions of surface type re-
gions but also to enable analysis of the size and shape of ice
surface type regions (e.g., for floe size or melt pond size de-
termination), the choice of object-based classification over
pixel-based was clear.

A wide range of algorithms were considered for classi-
fying image objects. We first considered the use of super-
vised versus an unsupervised classification schemes. Unsu-
pervised schemes were rejected as they produce inconsistent,
non-intercomparable results. These schemes, such as cluster-
ing algorithms, group observations into a predefined number
of categories – even if not all feature types of interest are
present in an image. For example, an image containing only
snow-covered ice will still be categorized into the same num-
ber of classes as an image with snow, melt ponds, and open
water together – resulting in multiple classes of snow. Since
the boundary between classes also changes in each image,
standardizing results across imagery with different sources
and of scenes with different feature content would be chal-
lenging at best.

Supervised classification schemes instead utilize a set of
known examples (called training data) to assign a classifica-
tion to unknown objects based on similarity to user-identified
objects. Supervised classification schemes have several ad-
vantages. They can produce fixed surface type definitions,
allow for more control and fine tuning of the algorithm, im-
prove in skill as more points are added to the training data,
and allow users to choose what surface characteristics they
wish to classify. While many machine learning techniques
have shown high accuracy in remote sensing applications
(Duro et al., 2012), we selected a random forest machine
learning classifier over other supervised learning algorithms
for its ability to handle nonlinear and categorical training in-
puts (Breiman, 2001; DeFries, 2000; Pal, 2005), resistance to
outliers in the training dataset (Breiman, 1996), and relative
ease of implementation.

Our scheme, learning from the success of Miao et
al. (2015) in classifying aerial imagery, uses an image seg-
mentation algorithm to divide the image into objects which
are then classified with random forest machine learning. Our
implementation of the segmentation and classification, how-
ever, were custom-built using well-known image processing
tools (Pedregosa et al., 2011; van der Walt et al., 2014) in
an open-source format. We do not attempt to assert that our
method is the optimal method for processing sea ice imagery.
Instead, we argue that it is easily usable by the community at
large, produces highly accurate and consistent results, and
merits consideration as a standardized methodology. In coor-
dination with this publication, we release our code (Wright,
2017) with the intention of encouraging movement toward a
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standardized method. Our hope is to continue development
of the algorithm with contributions and suggestions from the
sea ice community.

3 Methods

3.1 Image collection and preprocessing

The imagery used to test the algorithm was selected from
four distinct sources in order to assess the algorithm’s abil-
ity to deliver consistent and intercomparable measures of
geophysical parameters. We chose high-resolution satellite
imagery from DigitalGlobe’s WorldView constellation in
panchromatic and eight-band multispectral formats, NASA
Operation IceBridge Digital Mapping System optical im-
agery, and aerial sRGB imagery collected using an aircraft-
mounted standard DLSR camera as part of the SIZONet
project. We first demonstrate the technique’s ability to han-
dle imagery representing all stages of the seasonal evolution
of sea ice conditions on a series of 22 panchromatic satellite
images collected between March and August 2014 at a single
site in the Beaufort Sea: 72.0◦ N, 128.0◦W. We then process
four multispectral WorldView 2 images of the same site, each
collected coincident with a panchromatic image and compare
results to assess the benefit of spectral information. Finally,
we process a set of 20 sRGB images and 20 IceBridge DMS
images containing a variety of sea ice surface types to illus-
trate the accuracy of the method on aerial image sources. The
imagery sources chosen for this analysis were selected to be
representative of the variation that exists in optical imagery
of sea ice, but there is an abundance of image data that can
be processed with this technique.

The satellite images were collected by tasking WorldView
1 and WorldView 2 Digital Globe satellites over fixed lo-
cations in the Arctic. Tasking requests were submitted to
DigitalGlobe with the support and collaboration of the Po-
lar Geospatial Center. The panchromatic bands of World-
View 1 and 2 both have a spatial resolution of 0.46 m at
nadir. The WorldView 1 satellite panchromatic band sam-
ples the visible spectrum between 400 and 900 nm, while the
WorldView 2 satellite panchromatic band samples between
450 and 850 nm. In addition, WorldView 2 has eight mul-
tispectral bands at 1.84 m nadir resolution, capturing bands
within the range of 400 to 1040 nm. Each WorldView im-
age captures an area of ∼ 700–1300 km2. Of the 22 use-
able panchromatic collections at the site, 15 were completely
cloud-free, while 7 of the images were partially cloudy. Im-
ages with partial cloud cover were manually masked and
cloud-covered areas were excluded from analysis. The aerial
sRGB imagery was captured along a 100 km long transect
to the north of Utqiaġvik, Alaska, with a Nikon D70 DSLR
mounted at nadir to a light airplane during June 2009. The
IceBridge imagery was collected in July 2016 near 73◦ N,
171◦W with a Canon EOS 5D Mark II digital camera. We

utilize the L0 (raw) DMS IceBridge imagery, which has a
10 cm spatial resolution when taken from 1500 ft (457.2 m)
altitude (Dominguez, 2010, updated 2017).

Each satellite image was orthorectified to mean sea level
before further processing. Orthorectification corrects for im-
age distortions caused by off-nadir acquisition angles and
produces a planimetrically correct image that can be ac-
curately measured for distance and area. Due to the rela-
tively low surface roughness of both multiyear and first year
sea ice (Petty et al., 2016), errors induced by ignoring the
real topography during orthorectification are small. Multi-
spectral imagery was pansharpened to the resolution of the
panchromatic imagery. Pansharpening is a method that cre-
ates a high-resolution multispectral image by combining in-
tensity values from a higher-resolution panchromatic image
with color information from a lower-resolution multispec-
tral image. The pansharpened imagery used here was cre-
ated using a “weighted” Brovey algorithm. This algorithm
resamples the multispectral image to the resolution of the
panchromatic image, then each pixel’s value is multiplied by
the ratio of the corresponding panchromatic pixel value to
the sum of all multispectral pixel values. The orthorectifica-
tion and pansharpening scripts were developed by the Polar
Geospatial Center at the University of Minnesota and utilize
the GDAL (Geospatial Data Abstraction Library) image pro-
cessing tools (GDAL, 2016). All imagery used was rescaled
to the full 8 bit color space for improved contrast and view-
ing. No other preprocessing was done to the aerial sRGB im-
agery or IceBridge DMS imagery.

3.2 Image segmentation

A flow chart of the image processing steps taken after pre-
processing is presented in Fig. 2. The first task in the image
processing algorithm is to segment the image into groups of
similar pixels, called objects. Accurate segmentation requires
finding the boundaries between the natural surface types we
wish to differentiate (e.g., the boundary between ice cov-
ered and open ocean), delineating their locations, and using
these boundaries to produce image objects. Sea ice surface
types have large differences in reflectivity and tend to change
abruptly, rather than gradually over a large distance. We ex-
ploit this characteristic by using an edge detection algorithm
to find boundaries between surface types. Figure 3 contains a
visual demonstration of this process. First, a Sobel–Feldman
operator (van der Walt et al., 2014) is applied to the input
image (Fig. 3a). The Sobel–Feldman filter applies a discrete
differentiation kernel across the image to find the local gra-
dient of the image intensity. High gradient values correspond
to abrupt changes in pixel intensity, which are likely bound-
aries between surface types. We scale the gradient values by
an amplification factor of 2 in order to further highlight edge
regions in the image. Following the amplification, we thresh-
old the lowest 10 % of the gradient image and set the values
to zero. This reduces noise detected by the Sobel–Feldman
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Figure 2. Flow diagram depicting the steps taken to classify an im-
age in the OSSP algorithm.

filter, and eliminates weaker edges. The amplification factor
and gradient threshold percentage are both tuning parame-
ters, which can be adjusted to properly segment images based
on the input image and the strength of edges sought.

The strongest edges in optical imagery of sea ice are typ-
ically the ocean–ice interface, followed by melt pond–ice
boundaries, then ice ridges and uneven ice surfaces. In gen-
eral, the more edges detected, the more segmented the image
will become, and the more computational resources required
to later classify the increased number of image objects. On
the other hand, an under-segmented image may miss the nat-
ural boundaries between surfaces. Under-segmentation intro-
duces classification error because an object containing two
surface types cannot be correctly classified. An optimally
segmented image is one which captures all the natural surface
boundaries with minimal over-segmentation (i.e., boundaries
placed in the middle of features). The appropriate parame-

ters for our imagery were tuned by visual inspection of the
segmentation results. In such inspection, desired segmen-
tation lines are manually drawn, and algorithm-determined
segmentation lines are overlain and evaluated for complete-
ness.

The result of the edge detection is a gradient map that
marks the strength of edges in the image. We use a water-
shed segmentation technique to build complete objects based
on edge locations and intensity (van der Walt et al., 2014).
We first calculate all local minimum values in the gradient
image, where a marker is then placed to indicate the origin
of watershed regions. Each region then begins iteratively ex-
panding in all directions of increasing image gradient until
encountering a local maximum in the gradient image or en-
countering a separately growing region. This continues until
every pixel in the image belongs to a unique set. With the
proper parameter selection, each object will represent a sin-
gle surface type. It is often the case that some areas will be
over-segmented (i.e., a single surface feature represented by
multiple objects). Over-segmentation can either be ignored
or objects can be recombined if they meet similarity criteria
in an effort to save computational resources. Here we chose
to classify objects without recombination. Figure 3b shows
the detected edges overlain on top of the input image.

The watershed segmentation algorithm benefits from the
ability to create objects of variable size. Large objects are
built in areas of low surface variability, while many small
objects are created in areas of high variability. This variable
object sizing is well suited to sea ice surface classification
because the variability of each surface type occurs at differ-
ent scales. Areas of open water and snow-covered first-year
ice, for example, can often be found in large expanses, while
areas that contain melt ponds, ice ridges, or rubble fields fre-
quently cover small areas and are tightly intermingled with
other surface types. Variable object sizes give the fine detail
needed to capture surfaces of high heterogeneity in their full
detail, while limiting over segmentation of uniform areas.

3.3 Segment classification

3.3.1 Overview

Once the image has been divided into regions of the same
surface type, each object must be classified as to which sur-
face type it represents. We classify the objects using a ran-
dom forest machine learning technique (Breiman, 2001; Pe-
dregosa et al., 2011). The development of a machine learn-
ing algorithm requires multiple iterative steps: (1) select at-
tributes with which to classify each object, (2) create a train-
ing dataset, (3) classify unknown image objects based on the
training set, and (4) assess performance and refine, starting
from step 1. Random forest classifiers excel for their relative
ease of use, flexibility in the choice of attributes that define
each object, and overall high accuracy even with relatively
small training datasets. The random forest classifier is only
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Figure 3. Visual representation of important steps in the image processing workflow. Panel (a) shows preprocessed panchromatic WorldView
2 satellite imagery, taken on 1 July 2014. In panel (b), outlines of the image objects created by our edge detection and watershed transfor-
mation are shown overlain on top of the image in panel (a). Panel (c) shows the result of replacing each object with a value corresponding to
the prediction of the random forest classifier.

one of many available machine learning approaches and oth-
ers may also be suitable.

3.3.2 Surface type definitions

Another key challenge to quantitatively monitoring sea ice
surface characteristics from high-resolution imagery is a lack
of standardized surface type definitions. We noted above that
high-resolution sea ice imagery comes from many sources,
each with different characteristics. As we will see below,
each image source will need to have its own training set
created by expert human classifiers. The human classifier
must train the algorithm according to definitions of each sur-
face type that are broadly agreed upon in the community
for the algorithm to be successful in producing intercom-
parable datasets. While at first the definitions of open wa-
ter, ice, and melt ponds might seem intuitive, many experts
in the cryosphere community have differing opinions, espe-
cially on transitional states. Deciding where to delineate tran-
sitional states is important to standardization. We have estab-
lished the following definitions for the three surface types
we sought to separate, binning transitional states in a manner
most consistent with their impact on albedo. Our surface type
definitions focus on the behavior of a surface in absorption of
shortwave radiation and radiative energy transfer.

– (1) Open Water (OW): applied to surface areas that had
zero ice cover as well as those covered by an unconsol-
idated frazil or grease ice.

– (2) Melt Ponds and Submerged Ice (MPS): applied to
surfaces where a liquid water layer completely sub-
merges the ice.

– (3) Ice and Snow (I+S): applied to all surfaces covered
by snow or bare ice, as well as decaying ice and snow
that is saturated but not submerged.

The definition of melt ponds includes the classical defini-
tion of melt ponds where meltwater is trapped in isolated
patches atop ice, as well as optically similar ice submerged
near the edge of a floe. While previous work separates these
categories (e.g., Miao et al., 2015) we did not attempt to
break these “pond” types because the distinction is unimpor-
tant from a shortwave energy balance (albedo) perspective.
We further refined the Ice and Snow category into two sub-
categories:

– (3a) Thick Ice and Snow: applied during the freezing
season to ice appearing to the expert classifier to be
thicker than 50 cm or having an optically thick snow
cover and to ice during the melt season covered by a
drained surface scattering layer (Perovich, 2005) of de-
caying ice crystals.

– (3b) Dark and Thin Ice: applied during the freezing sea-
son to surfaces of thin ice that are not snow covered,
including nilas and young ice. This latter label was also
applied during melting conditions to ice covered by sat-
urated slush but not completely submerged in water.
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In some prior publications (e.g., Polashenski et al., 2012) la-
bel 3b was described as “slushy bare ice”. We acknowledge
that the boundary between the ice and snow sub-categories
is often more a continuum than a defined border but note
that distinguishing the two types is useful for algorithm ac-
curacy. Dividing the ice/snow type creates two relatively ho-
mogeneous categories rather than a single larger category
with large internal differences. A user only interested in the
categories of ice, ponds, and open water could simply re-
combine them, as we have done for analysis. A temporary
fourth category was created to classify shadows over snow
or ice. This category is used exclusively as an intermediate
step in processing that allows us to bypass masking shadow
regions (e.g., Webster et al., 2015). As this was not designed
to be a stand-alone classification category (as opposed to
Miao et al., 2015, 2016), objects classified as a shadow were
merged into the ice/snow category (as is done in Webster et
al., 2015). Any misclassifications due to shadow cover are
accounted for in measurements of overall classification ac-
curacy (Sect. 5.1).

3.3.3 Attribute selection

Attributes are quantifiable measures of image object prop-
erties used by the classifier in discriminating surface types.
An enormous array of possible attributes could be calculated
for each image object and could be calculated in many ways.
Examples of properties that could be quantified as attributes
include values of the enclosed pixels, the size and shape of
the object, and values of adjacent pixels. The calculation of
pixel values aggregated by image objects takes advantage of
the additional information held in the pixel group (as com-
pared to individual pixels). We have compiled a list repre-
senting a relevant subset of such attributes that can be used to
distinguish different surface types in Table 1. We included a
selection of attributes similar to those used in previous publi-
cations (e.g., Miao et al., 2015), as well as attributes we have
developed specifically for our algorithm.

Each image source provides unique information about the
surface and it can be expected that a different list of attributes
will be optimal for classification of each image type – even
though we seek the same geophysical parameters. As high-
resolution satellite images can have millions of image ob-
jects, calculating the attributes of each object quickly be-
comes computationally expensive. We have, therefore, deter-
mined those that are most valuable for classifying each image
type to use in our classification. For example, pansharpened
WorldView 2 imagery has eight spectral bands which can in-
form the classification, while panchromatic versions of the
same image have only a single band. Our goal was to select a
combination of attributes that describe the intensity and tex-
tural characteristics of the object itself, and of the area sur-
rounding the object. Table 1 indicates which attributes were
selected for use in classifying each image type.

Table 1. Attributes used for classifying each of the three image
types. X marks indicate attributes that were used for that image type.
Dash marks indicate attributes that are available but were not found
to be sufficiently beneficial in the classification to merit inclusion
under our criteria. Empty areas indicate attributes that are not avail-
able on that image type (e.g., band ratios on a panchromatic image).
NIR is the near-infrared wavelength. B1 is the costal WorldView
band, and B2 is the blue band. R, G, and B, stand for red, green,
and blue, respectively.

Attribute MS PAN Aerial

Mean (pan) X
Mean (coastal) X
Mean (blue) X X
Mean (green) X X
Mean (yellow) X
Mean (red) X X
Mean (red edge) X
Mean (NIR1) X
Mean (NIR2) –
Median (pan) X
SD (pan) X
Min intensity (pan) – X –
Max intensity (pan) – X –
SD (blue) – X
SD (green) – X
SD (red) – X
Entropy – X X
Segment size – X X
Image date X X X
Coastal/green X –
Blue/NIR1 X
Green/NIR1 X
Yellow/red edge X
Yellow/NIR1 X
Yellow/NIR2 X
Red/NIR1 X
(B1 – NIR1)/(B2 + NIR1) X
(G – R)/(G + R) X
(B – R)/(B + R)∗ – X
(B – G)/(B + G)∗ – X
(G – R)/(2 ·B – G – R)∗ – X
Neighbor mean X X X
Neighbor SD – X X
Neighbor max – X X
Neighbor entropy – X X

∗ Miao et al. (2015)

We selected attributes by only including those with a high
relative importance. The importance of each attribute is a
property of a random forest classifier, and is defined as the
number of times a given attribute contributed to the final pre-
diction of an input. After initial tests with large numbers of
attributes, we narrowed our selection by using only those at-
tributes that contributed to a classification in greater than 1 %
of cases. For discussion here, we group the attributes into two
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broad categories: those calculated using internal pixels alone
and those calculated from external pixel values.

3.3.4 Object attributes

The most important attributes in the classification of an im-
age segment were found to be aggregate measures of pixel
intensity within the object. We determine these by analyzing
the mean pixel intensity of all bands and the median of the
panchromatic band. An important benefit of image segmen-
tation is the ability to calculate estimates of surface texture
by looking at the variability within a group of pixels. The
texture is often unique in the different surface types we seek
to distinguish. Open water is typically uniformly absorptive
and has minimal intensity variance. Melt ponds, in contrast,
come in many realizations and exhibit a wider range in re-
flectance, even within individual ponds. To estimate surface
texture, we calculate the standard deviation of pixel intensity
values and the image entropy within each segment. Image
entropy, H , is calculated as

H =−
∑

p · log2p, (1)

where p represents the bin counts of a pixel intensity his-
togram within the segment. We also calculate the size of each
segment as the number of pixels it contains. As sea ice sur-
face characteristics evolve appreciably over time, particularly
before and after melt onset, we use image acquisition date (in
Julian day format) as an attribute in for classification. While
date of melt onset varies, and the reader might argue that
a more applicable attribute would be image melt state, melt
state is not an a priori characteristic of the image. It would
therefore need to be manually defined for each image. To en-
sure that the method remains fully automated image acqui-
sition date is used as a proxy for melt state, whereby larger
Julian day values correlate to later in the melt season.

In multispectral imagery, we also calculate the ratios be-
tween the mean absorption of each object in certain portions
of the spectrum. The important band ratios used for the mul-
tispectral WorldView imagery were determined empirically.
We tested every possible band combination and successively
removed the ratios that did not contribute to more than 1 %
of object classifications. In aerial imagery we use the band
ratios shown to be informative in this application by Miao et
al. (2015).

In addition to information contained within each object,
we utilize information from the surrounding area. To ana-
lyze the surrounding region, we determine the dimensions
of a minimum bounding box that contains the object, then
expand the box by five pixels in each direction. All pixels
contained within this box, minus those in the object, are con-
sidered to be neighboring pixels. Analogous to the internal
attribute calculations, we find the average intensity and stan-
dard deviation of these pixels. We also calculate the maxi-
mum single intensity within the neighboring region. Search-
ing for attributes outside of the object improves the algo-

rithm’s predictive capabilities by providing spatial context.
Bright neighboring pixels (as an analog for an illuminated
ridge) often provide information to distinguish, for example,
a shadowed ice surface from a melt pond. In panchromatic
imagery, melt ponds and shadows appear similar when eval-
uated solely on internal object attributes. However, a dark
region with an immediately adjacent bright region is more
likely to be a shadow than a dark region not adjacent to a
bright pixel (e.g., a pond). We do note that it is likely that a
more complex algorithm, for example identifying those pix-
els in a radius or distance to the edge of the segment, rather
than using a bounding box, would be more reliable. The
tradeoff, however, is one of higher computational expense.

3.4 Training set creation

Four training datasets were created to analyze the images se-
lected for this paper. One training set was created for each
imagery source: panchromatic satellite imagery, multispec-
tral satellite imagery, aerial sRGB imagery, and IceBridge
DMS imagery. Each training set consists of a list of image
objects that have been manually classified by a human and
a list of attribute values calculated from those objects and
their surroundings. The manual classification is carried out
by multiple sea ice experts. Experienced observers of sea
ice can classify the majority (85 %+) of segments in a high-
resolution optical image with confidence. To address the am-
biguity in correct identification of certain segments, however,
we used several (4) skilled sea ice observers to repeatedly
classify image objects. For the initial creation of our train-
ing datasets, two of the users had extensive training in the
OSSP algorithm and surface type definitions, while the other
two had no experience with the algorithm. Users in both cat-
egories were briefed on the standard surface type definitions
used for this study (Sect. 3.3.2). Figure 4 shows a confusion
matrix to compare user classifications. Cells in the diagonal
indicate agreement between users, while off-diagonal cells
indicate disagreement (Pedregosa et al., 2011). Agreement
between the two well-trained users was high (average 94 %
of segment identifications; Fig. 4a), while the agreement be-
tween a well-trained user and a new user was lower (average
of 86 %; Fig. 4b). After an in-person review of the training
objects among all four users, the overall agreement rose to
97 %. The remaining 3 % of objects were cases where the
expert users could not agree on a single classification, even
after review of the surface type definitions and discussion.
These objects were therefore not used in the final training
set. Figure 5 shows a series of surface types that span all our
classification categories, including those where the classifi-
cation is clear and those where it is difficult. Difficult seg-
ments are over-represented in these images for illustrative
purposes, and represent a relatively small fraction of the total
surface.

While the skill of the machine learning prediction in-
creases substantially as the size of the training set grows,
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Figure 4. Confusion matrices comparing classification tendencies between two users experienced with the image processing algorithm (a)
and between an experienced user and a new user (b). Squares are colored based on the value of the cell, with darker colors indicating more
matches. Values along the diagonal of each confusion matrix represent the agreement between each user, while values in off-diagonal regions
represent disagreement.

creating large training sets is time consuming. We found that
training datasets of approximately 1000 points yielded accu-
rate and consistent results. We have developed a graphical
user interface (GUI) to facilitate the rapid creation of large
training sets (see Fig. 6). The GUI presents a user with the
original image side by side with an overlay of a single seg-
ment on that image. The user assigns a classification to the
segment by visual determination.

The training dataset is a critical component of our algo-
rithm because it directly controls the accuracy of the machine
learning algorithm – and using a consistent training set is
necessary for producing intercomparable results. In coordi-
nation with this publication we are releasing our version 1.0
training datasets with the intention that they would represent
a first version of the standard training set to use with each im-
age type. Though we have found this training dataset robust
through our error analyses below, it is our intention to solicit
broader input from the community to refine and expand the
training datasets available and release future improved ver-
sions.

In addition to cross-validating the creation of a training
dataset between users, we assess the quality of our training
set through an out-of-bag (OOB) estimate, which is an inter-
nal measure of the training set’s predictive power. The ran-
dom forest method creates an ensemble (forest) of classifi-
cation trees from the input training set. Each classification
tree in this forest is built using a random bootstrap sample of
the data in the training set. Because training samples are se-
lected at random, each tree is built with an incomplete set of
the original data. For every sample in the original training set,

there then exists a subset of classifiers that do not contain that
sample. The error rate of each classifier when used to predict
the samples that were left out is called the OOB estimate
(Breiman, 2001). The OOB estimate has been shown to be
equivalent to predicting a separate set of features and com-
paring the output to a known classification (Breiman, 1996).

3.5 Assigning classifications

Once the training dataset is complete, the algorithm is pre-
pared to predict the classification of unknown objects in the
images. The random forest classifier is run and a classified
image is created by replacing the values within each segment
by the classification label predicted. Figure 3c shows the re-
sult of labeling image objects with their predicted classifica-
tion. From the classified image, it is possible to produce a
number of useful statistics. The most basic measurement is
the total pixel counts for each of the three surface categories.
This provides both the total area, in square kilometers, that
each surface covers and the fraction of each image that is
covered by each surface type. It would also be possible to
calculate measurements such as the average segment size for
each surface, melt pond size and connectivity, or floe size
distributions. Each of these, however, has its own standard-
ization problems significant enough to merit their own paper.

For demonstration, we have used the output from our im-
age classification to calculate the fractional melt pond cover-
age for each date. The melt pond fraction was defined as the
area of melt ponds and submerged ice divided by the total
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Figure 5. Examples of surfaces seen in aerial imagery of sea ice that span our four classification categories. Panel (a): snow-covered surface.
Panel (b): ice with a thin surface scattering layer where disagreement on true classification exists – this represents a small fraction of total
surface area. Panel (c): saturated slush that is not submerged in water. Panel (d): surface transitioning to a melt pond that is not yet fully
submerged. Panel (e): melt pond. Panel (f): dark melt pond that has not completely melted through. Panel (g): submerged ice. Panel (h): brash,
mostly submerged, included in the melt pond category. Panel (i): melt pond that has completely melted through to open water. Panel (j): open
water.
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Figure 6. Graphical user interface used to create training datasets and to assess the accuracy of a classified image. Bottom left panel shows
an overview of the region to provide the user with spatial context. Top left magnifies the image and highlights the segment of interest, while
top right shows the same region with no segment overlap. The user is allowed to choose between any of the relevant surface categories, or
to indicate that they are unsure of the classification. As shown, the user interface is demonstrating the classification of a segment for use in
a training set. This same GUI is also capable of asking a user to classify an individual pixel, which can be compared to the final classified
image for determining accuracy (Sect. 3.6).

area covered by ice floes, i.e.,

Melt pond coverage=
AreaMPS

AreaMPS+ AreaI+S
, (2)

where the subscript MPS indicates predicted melt ponds and
submerged ice and I+S indicates predicted ice and snow.

3.6 Determining classification accuracy

The primary measure of classification accuracy was to test
the processed imagery on a per pixel basis against human
classification. For every processed image, we selected a sim-
ple random sample of 100 pixels chosen from the whole im-
age and asked four sea ice experts to assign a classification
to those pixels. For a single image from each image source
we also asked the sea ice experts to classify and additional

900 pixels. This larger sample was created to demonstrate a
tighter confidence interval, while the smaller samples were
chosen to demonstrate consistency across images. We used
the same GUI developed to create training datasets to assess
pixel accuracy. Pixels were presented at random to the user
by showing the original image with the given pixel high-
lighted. The user then identified which of the surface type
categories best described that pixel. This assignment is then
compared to the algorithm’s prediction behind the scenes.
The accuracy, as determined by each of the four experts, was
averaged to create a composite accuracy for each image.
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4 Results

4.1 Classification of four imagery sources

The OSSP image processing method proved highly suitable
for the task of classifying sea ice imagery. A visual compari-
son between the raw and processed imagery, shown in Fig. 7
can quickly demonstrate this in a qualitative sense. Figure 7
contains a comparison between the original and classified
imagery for each source, selected to show the performance
of the algorithm on images that contain a variety of surface
types. The colors shown correspond to the classification cat-
egory; regions colored black are open water, blue regions are
melt ponds and submerged ice, gray regions are wet and thin
ice, and white regions are snow and ice. The quantitative pro-
cessing results, including surface distributions and classifica-
tion accuracy, are shown in Table 2. The overall classification
accuracy was 96± 3 % across 20 IceBridge DMS images;
95± 3 % across 20 aerial sRGB images; 97± 2 % across
22 panchromatic WorldView 1 and 2 images; and 98± 2 %
across 4 multispectral WorldView 2 images.

The nature of the classification error is presented using a
confusion matrix that compares the algorithm classification
with a manual classification for 1000 randomly selected pix-
els. Four confusion matrices, one for a single image from
each of the four image sources, are shown in Fig. 8. Val-
ues along the diagonal of the square are the classifications
where the algorithm and the human observer agreed, while
values in off-diagonal areas indicate disagreement. Concen-
tration of error into a particular off-diagonal cell helps illus-
trate the types of confusion the algorithm experiences. The
number of pixels that fall into off-diagonal cells is low across
all imagery types. In the IceBridge imagery, there is a slight
tendency for the algorithm to classify surfaces as open water
where a human would choose melt pond. This is caused by
exceptionally dark melt ponds on the edge of melting through
(Fig. 5f and i). Classification of multispectral WorldView im-
agery has a small bias towards classifying melt ponds over
dark or thin ice (Fig. 5d). Aerial sRGB and panchromatic
WorldView images do not have a distinct pattern to their clas-
sification errors.

The internal metric of classification training dataset
strength, the OOB estimates, on a 0.0 to 1.0 scale, is shown
in Table 3 for the trees built from our four training sets. The
OOB estimate represents the mean prediction error of the
random forest classifier; i.e., an OOB score of 0.92 estimates
that the decision tree would predict 92 % of segments that are
contained in the training dataset correctly. The discrepancy
between OOB error and the overall classification accuracy
is a result of more frequent misclassification of smaller ob-
jects; overall accuracy is area weighted, while the OOB score
is not.

4.2 WorldView: analyzing a full seasonal progression

We analyzed 22 images at a single site in the Beaufort Sea
collected between March and August 2014 to challenge the
method with images that span the seasonal evolution of ice
surface conditions. The site is Eulerian; it observes a sin-
gle location in space rather than following a single ice floe
through its life cycle as it drifts. Still, the results of these
image classifications (shown in Fig. 9) illustrate the progres-
sion of the ice surface conditions in terms of our four cate-
gories over the course of a single melt season. While cloud
cover impacted the temporal continuity of satellite images
collected at this site, we are still able to follow the seasonal
evolution of surface features. A time series of fractional melt
pond coverage calculated from the satellite image site is plot-
ted in Fig. 10. The melt pond coverage jumps to 31 % in the
earliest June image, as initial ponding begins and floods the
surface of the level first year ice. This is followed by a fur-
ther increase to 52 % coverage in the next few days. The melt
pond coverage then drops back down to 34 % as melt wa-
ter drains from the surface and forms well-defined ponds.
The evolution of melt pond coverage over our satellite ob-
servation period is consistent with prior field observations
(Eicken, 2002; Landy et al., 2014; Polashenski et al., 2012)
and matches the four stages of ice melt first described by
Eicken (2002). The ice at this observation site fully transi-
tions to open water by mid-July, though it appears that the
ice is advected out of the region in the late stages of melt
rather than completing melt at this location.

5 Discussion

5.1 Error

There are four primary sources of error in the OSSP method
as presented, two internal to the method and two external. In-
ternal error is caused by segment misclassification and by in-
complete segmentation (i.e., leaving pixels representing two
surface types within one segment). The net internal error was
quantified in Sects. 3.6 and 4. External error is introduced by
pixilation – or blurring of real surface boundaries due to in-
sufficient image resolution – and human error in assigning a
“ground truth” value to an aerial or satellite observation dur-
ing training.

5.1.1 Internal error

Through assessing the accuracy of each classified image on a
pixel-by-pixel basis (Sect. 3.6), we collect all internal sources
of error into one measurement: the algorithm either assigned
the same classification as a human would have, or it did not.
Total internal accuracy calculated for the method, relative to
human classifiers, is quite good, at 90–99 % across all im-
age types. Our experience is that this level of accuracy ap-
proaches the accuracy with which fractional surface coverage
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Table 2. The complete results of imagery processed for this analysis. Descriptions for each image include the image type, date collected, the
percent of the image that falls into each of the four categories, and the accuracy assessment.

Image ID Sensor type Date collected Ice + Snow DTI MPS OW Accuracy

102001002C214D00 Panchromatic 11-Mar-14 96 3 0 2 97
103001002E8F0D00 Panchromatic 18-Mar-14 97 3 0 0 97
102001002BBA0C00 Panchromatic 19-Mar-14 97 2 0 1 96
103001002FC75200 Panchromatic 23-Mar-14 94 4 0 3 95
102001002CB77C00 Panchromatic 27-Mar-14 98 2 0 0 100
1030010030403A00 Panchromatic 31-Mar-14 95 2 0 3 98
1030010031B65000 Panchromatic 4-Apr-14 96 3 0 1 99
102001002BA6C100 Panchromatic 8-Apr-14 93 3 0 4 100
103001002F79A700 Panchromatic 21-Apr-14 93 3 0 4 98
1030010030371B00 Panchromatic 24-Apr-14 93 7 0 0 98
103001003102A600 Panchromatic 4-May-14 76 16 0 8 98
102001003007FA00 Panchromatic 13-May-14 87 3 0 10 97
10300100306F2E00 Panchromatic 19-May-14 83 4 0 13 96
102001003035D700 Panchromatic 13-Jun-14 49 7 25 18 95
1030010033AAC400 Panchromatic 19-Jun-14 20 3 16 61 97
1020010031DF9E00 Panchromatic 20-Jun-14 27 2 31 39 96
1020010032B94E00 Panchromatic 24-Jun-14 45 2 41 11 95
102001003122A700 Panchromatic 25-Jun-14 48 1 37 13 97
102001002F4F1A00 Panchromatic 28-Jun-14 57 2 28 14 95
10300100346D1200 Panchromatic 1-Jul-14 38 0 23 39 97
1030010035C8D000 Panchromatic 12-Jul-14 0 0 0 100 100
103001003421AB00 Panchromatic 20-Aug-14 0 0 0 100 100
10300100324B7D00 Multispectral 13-Jun-14 44 7 29 19 96
1030010033AAC400 Multispectral 19-Jun-14 16 3 19 62 97
10300100346D1200 Multispectral 1-Jul-14 44 2 26 28 98
1030010035C8D000 Multispectral 12-Jul-14 0 0 0 100 100
2016_07_13_05863 IceBridge 13-Jul-16 50 2 34 14 92
2016_07_13_05882 IceBridge 13-Jul-16 72 1 26 0 97
2016_07_13_05996 IceBridge 13-Jul-16 70 2 28 0 95
2016_07_13_06018 IceBridge 13-Jul-16 61 2 36 1 91
2016_07_13_06087 IceBridge 13-Jul-16 66 1 33 0 99
2016_07_16_00373 IceBridge 16-Jul-16 9 0 2 89 100
2016_07_16_00385 IceBridge 16-Jul-16 66 1 14 20 98
2016_07_16_00662 IceBridge 16-Jul-16 49 1 16 35 98
2016_07_16_00739 IceBridge 16-Jul-16 67 2 25 6 97
2016_07_16_01569 IceBridge 16-Jul-16 22 0 7 71 97
2016_07_16_02654 IceBridge 16-Jul-16 35 0 10 54 95
2016_07_19_01172 IceBridge 19-Jul-16 62 0 14 24 90
2016_07_19_01179 IceBridge 19-Jul-16 57 0 10 32 95
2016_07_19_02599 IceBridge 19-Jul-16 51 0 7 43 99
2016_07_19_02603 IceBridge 19-Jul-16 69 0 9 22 99
2016_07_19_02735 IceBridge 19-Jul-16 74 0 25 0 100
2016_07_19_03299 IceBridge 19-Jul-16 57 0 8 35 96
2016_07_21_01221 IceBridge 21-Jul-16 49 0 4 47 97
2016_07_21_01311 IceBridge 21-Jul-16 87 1 5 7 95
2016_07_21_01316 IceBridge 21-Jul-16 92 0 4 4 99
DSC_0154 Aerial sRGB 8-Jun-09 43 4 53 0 94
DSC_0327 Aerial sRGB 8-Jun-09 33 3 63 0 90
DSC_0375 Aerial sRGB 8-Jun-09 96 0 4 0 99
DSC_0422 Aerial sRGB 8-Jun-09 88 0 11 0 98
DSC_0223 Aerial sRGB 10-Jun-09 46 1 53 0 93
DSC_0243 Aerial sRGB 10-Jun-09 59 1 40 1 98
DSC_0314 Aerial sRGB 10-Jun-09 89 0 11 0 95
DSC_0319 Aerial sRGB 10-Jun-09 75 2 19 4 88
DSC_0323 Aerial sRGB 10-Jun-09 37 2 61 0 95
DSC_0338 Aerial sRGB 10-Jun-09 83 2 15 1 95
DSC_0386 Aerial sRGB 10-Jun-09 80 3 14 3 89
DSC_0394 Aerial sRGB 10-Jun-09 79 2 10 9 95
DSC_0412 Aerial sRGB 10-Jun-09 63 2 24 10 92
DSC_0425 Aerial sRGB 10-Jun-09 56 2 17 24 97
DSC_0439 Aerial sRGB 10-Jun-09 71 1 6 22 98
DSC_0441 Aerial sRGB 10-Jun-09 57 0 4 38 98
DSC_0486 Aerial sRGB 10-Jun-09 53 1 17 29 96
DSC_0634 Aerial sRGB 10-Jun-09 72 1 14 12 96
DSC_0207 Aerial sRGB 13-Jun-09 80 1 19 0 96
DSC_0514 Aerial sRGB 13-Jun-09 86 1 13 0 97
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Figure 7. Side-by-side comparison of preprocessed imagery (a) and the result of classification (b) for each of the four imaging platforms.
Images depict ice surfaces in varying stages of melt. The NASA IceBridge image, for example, is in very late stages of melt ponds that have
already melted through to the ocean.
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Figure 8. Accuracy confusion matrices comparing the classification of 1000 pixels between a human and the algorithm. Squares are colored
based on the value of the cell, with darker colors indicating more matches. Values along the diagonal of each confusion matrix represent the
agreement between each classifier, while values in off-diagonal regions represent disagreement.

Table 3. Out-of-bag scores for the three training datasets used to
classify imagery from each of the four sensor platforms, and the
number of objects manually classified for each set.

Image Training dataset Out-of-bag
source size error

Panchromatic WorldView 1000 0.94
Pansharpened WorldView 859 0.89
Aerial imagery 945 0.94
IceBridge imagery 940 0.91

can practically be determined from labor-intensive ground
campaign techniques such as lidar and measured linear tran-
sects (e.g., Polashenski et al., 2012)

The first type of internal error is misclassification error,
where the image classification algorithm fails to assign the
same classification that a human expert would choose. This
type of error is best quantified by analyzing the training
datasets. The OOB score for each forest of decision trees
(Table 3) provides an estimate of each forest’s ability to cor-
rectly predict objects similar to those used to create the forest
(Sect. 3.4). The OOB score is not influenced by segmenta-
tion error, because the objects selected for training dataset
use were filtered to remove any objects that contained more
than one surface type. The most commonly misapplied cate-
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Figure 9. Seasonal progression of surface type distributions at the satellite image collection site; 2014 in the Beaufort Sea at 72◦ N, 128◦W.
This site represents a Eulerian observation of the sea ice surface and does not track a floe across its lifetime. Average scene size was 956 km2

with a minimum of 304 km2 and a maximum of 1321 km2.

gory was the Dark and Thin Ice subcategory of Ice and Snow.
This category often represents surface types that are in a tran-
sitional state and is often difficult to classify even for a hu-
man observer.

The second type of internal error is segmentation error,
where an object is created that contains more than one of the
surface types we are trying to distinguish. This occurs when
boundaries between objects are not placed where boundaries
between surfaces exist – an issue most common where one
surface type gradually transitions to another. When this oc-
curs, some portion of that object will necessarily be mis-
classified. We have compensated for areas that lack sharp
boundaries by biasing the image segmentation towards over-
segmentation, but a small number of objects still contain
more than one surface type. During training set creation, we
asked the human experts to identify objects containing more
than one surface type. In total, 3.5 % of objects were identi-
fied as insufficiently segmented in aerial imagery, and 2 % of
objects in satellite imagery. This represents the upper limit
for the total percentage of insufficiently segmented objects
for several reasons. First, segmentation error was most preva-
lent in transitional surface types (i.e., Dark and Thin Ice),
which represents a small portion of the overall image and is
composed of relatively small objects. This category is over-
represented in the training objects because objects were cho-
sen to sample each surface type and not weighted by area. In
addition, insufficiently segmented objects are generally com-
posed of only two surface types and end up identified as the
surface which represents more of the object’s area. Hence the
total internal error introduced by segmentation error is appre-
ciably smaller than misclassification error, likely well under
1 %.

5.1.2 External error

The first form of external error is introduced by image reso-
lution. At lower image resolutions, more pixels of the image
span edges, and smaller features are more likely to go unde-
tected. Pixels on the edge of surface types necessarily repre-
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Figure 10. Evolution of melt pond fraction over the 2014 season at
our satellite image collection site; 2014 in the Beaufort Sea at 72◦ N,
128◦W. This site represents a Eulerian observation of the sea ice
surface, and does not track a floe across its lifetime. By August, the
sea ice extent has retreated north of this location, and we therefore
do not capture a full melt pond cycle.

sent more than one surface type, but can be classified as only
one. Misclassification of these has the potential to become a
systemic error if edge pixels were preferentially placed in a
particular category. We assessed this error’s impact by taking
high-resolution IceBridge imagery (0.1 m), downsampling to
progressively lower resolution, and reprocessing. Figure 11
shows the surface type percentages for three IceBridge im-
ages at decreasing resolution. Figure 12 shows a series of
downsampled images and their classified counterparts. Sur-
prisingly, despite clear pixilation and aliasing in the imagery,
little change in aggregate classification statistics occurred as
resolution was lowered from 0.1 to 2 m. This suggests that
at resolutions used for this paper, edge pixels do not sig-
nificantly impact the classification results. It may also be
possible to forego the pansharpening process discussed in
Sect. 3.1 and use 2 m multispectral WorldView imagery di-
rectly.

The second type of external error occurs when the human
expert fails to correctly label a segment. Even skilled human
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Figure 11. Change in surface coverage percentage as a result of
downsampling three IceBridge images. Each plot represents a single
image, with resolution along the x axis on a log scale. Imagery starts
at the nominal IceBridge resolution of 0.1 m and is degraded to a
maximum of 50 m.

Figure 12. Visual demonstration of the downsampling effect on a
single NASA IceBridge image. The top image is shown at the orig-
inal 0.1 m resolution. The middle image is a resolution of 2 m –
the equivalent of a multispectral WorldView 2 image without pan-
sharpening. The bottom has a resolution of 10 m, where pixel size
has begun to exceed the average melt pond size.

observers cannot classify every pixel in the imagery defini-
tively, and indeed the division between the surface types can
sometimes be indistinct even to an observer on the ground.
We addressed this concern by employing observers exten-
sively trained in the sea ice field, both in remote sensing
and in situ observations, comparing multiple human classi-
fications of the same segments. After discussion, the por-
tion of image objects subject to human observer disagree-
ment or uncertainty is small. Human observers disagreed on
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3 % of objects creating our training sets. The possibility of
systemic bias among the expert observer classifications can-
not be excluded because real ground truth, in the form of
geo-referenced ground observations from knowledgeable ob-
servers was, unfortunately, not available for any of the im-
agery. Conducting this type of validation would be helpful,
but given high confidence human expert classifiers expressed
in their classifications and low disagreement between them,
it may not be essential.

5.1.3 Overall error

The fact that misclassification dominates the internal error
metric suggests that error could be reduced if additional ob-
ject attributes used by human experts to differentiate surface
types could be identified. The agreement between the OSSP
method and a human (96 %± 3 %) is similar to the agree-
ment between different human observers (97 %), meaning
that the algorithm is nearly as accurate as a human manu-
ally classifying an entire image. If we exclude the possibility
for systemic error in human classification, and assume other
errors are unrelated to one another, we can calculate a total
absolute accuracy in surface type determination as approxi-
mately 96 %.

5.2 Producing derived metrics of surface coverage

The classified imagery, presented as a raster (e.g., Fig. 7), is
not likely to be the end product used in many analyses. Met-
rics of the sea ice state in simpler form will be calculated.
We already introduced the most basic summary metrics in
Sect. 4, where we presented fractional surface coverage cal-
culated from the total pixel counts for each of the four surface
categories in each image. We also presented the calculation
of melt pond coverage as a fraction of the ice-covered por-
tion of the image, rather than total image area. The calcu-
lation of these is straightforward. Other metrics commonly
discussed in the literature that could be produced with mini-
mal additional processing include those capturing melt pond
size, connectivity, or fractal dimension, as well as floe size
distribution or perimeter-to-area ratio. As with definitions of
surface type, standardizing metrics will be necessary to pro-
duce intercomparable results. We discussed the more com-
plex metrics which could be derived from this imagery with
several other groups. We determined that standardizing these
and other more advanced metrics will require more input and
consensus building before a community standard can be sug-
gested. We leave determining standard methods for calculat-
ing these more complex metrics to a future work.

Equipped with the images processed by OSSP, we con-
sider what size area must be imaged, classified, and sum-
marized to constitute “one observation” and how regionally
representative such an observation is. Even with the increas-
ing availability of high-resolution imagery, it is unlikely that
high-resolution imaging will regularly cover more than a

small portion of the Arctic in the near future. As a result,
high-resolution image analysis will likely remain a “sam-
pling” technique. Since the scale of sea ice heterogeneity
varies for each property type, a minimum area unique to
that property must be analyzed to qualify as a representa-
tive sample of the surface conditions. Finding that minimum
area involves addressing the “aggregate scale” – the area over
which a measured surface characteristic becomes uniform
and captures a representative average of the property in the
area (Perovich, 2005). It may also be possible to determine
an aggregate-scale statistic within well-constrained bounds
by random sub-sampling of the region and therefore reduce
processing time. Here we conduct analysis of these sampling
concepts and suggest this analysis of the aggregate scale be
conducted for any metric.

First, we sought to determine the aggregate scale for the
simple fractional coverage metrics of ice as a fraction of to-
tal area and melt pond as a fraction of ice area. This would
inform us, for example, as to whether processing the en-
tire area of a WorldView image (up to 1000 km2) was nec-
essary, or alternatively if a full WorldView image was suf-
ficient to constitute a sample. First, we evaluated the con-
vergence of fractional coverage within areas of increasing
size towards the image mean. For a WorldView image de-
picting primarily first year ice in various stages of melt, we
created non-overlapping gridded subsections and determined
the fractional coverage within each grid cell. The size of grid
cells was varied logarithmically from 100× 100 pixels (102)

to 31 622× 31 622 pixels (104.5) or from 0.0025 to 250 km2.
For each sample size, we gridded the image and evaluated
every subsection within the entire image. Figure 13a shows
a scatterplot of the fractional melt pond coverage in each im-
age grid plotted against the log of total area of that grid cell.
As the area sampled increases, the melt pond fraction shows
lower deviation from the mean, as expected. To assist in eval-
uating the convergence towards the mean, we plot the 95 %
prediction interval for each image subset size in Fig. 13a
(large red dots). The range of pond fraction values between
these two points represents the interval within which 95 %
of samples of this size would fall. The width of the 95 %
prediction interval declines linearly with respect to sample
area in log space, shrinking by 0.3 for each order of magni-
tude that sample area increases. Visually, it appears that max-
imum convergence may have been reached at a sample area
of ∼ 30 km2 (∼ 101.5 km2), though there are an insufficient
number of samples at this large area within a single image to
be certain. Regardless of whether convergence is complete,
the prediction interval tells us that at 30 km2, 95 % of areas
sampled could be expected to have pond coverage within 5 %
of the mean of a full image (∼ 1000 km2). This is consistent
with prior work that indicated the aggregate scale for melt
pond fraction determination is on the order of several tens of
square kilometers (Perovich, 2005; Perovich et al., 2002a).
In Fig. 13b we conduct the same analysis for the total ice-
covered fraction (ponded + unponded ice) of the image. We
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see that the range of the prediction interval generally drops as
larger samples are taken, but it does not converge as cleanly
or quickly as the pond coverage prediction interval does –
a finding that is unsurprising as ice fraction is composed of
discrete floes with sizes much larger than melt ponds. The
limited convergence indicates that the aggregate scale for de-
termination of ice covered fraction is at least on the order of
the scale of a WorldView image, and likely larger. Aggregate
scale ice concentration, unlike melt pond fraction, is a statis-
tic better observed with medium resolution remote sensing
platforms such as MODIS or Landsat due to the need for a
larger satellite footprint. WorldView imagery may be partic-
ularly useful for determining smaller-scale parts of floe size
distributions or for validating larger-scale remote sensing of
ice fraction, if the larger-scale pixels can be completely con-
tained within the WorldView image. Floe size distribution
will likely require nesting of scales in order to fully access
both large- and small-scale parts of the floe size distribution.

We next investigated whether it is possible to reduce the
processing load required to determine the melt pond or ice
fraction of an image within certain error bounds by process-
ing collections of random image subsets. To do this, it is use-
ful to first establish two definitions: (1) one random sample
of size N represents N randomly selected 100× 100 pixel
boxes, and (2) one adjacent sample of size N is a single
area with size 100

√
N × 100

√
N . In other words, a ran-

dom sample and an adjacent sample both represent an im-
age area of 10 000 ·N pixels, but consist of independent and
correlated pixels, respectively. We expect random samples
to better represent the total image mean melt pond fraction
because ice conditions are spatially correlated and a single
large area is not composed of independent samples. We eval-
uated this hypothesis by collecting 1000 random and adja-
cent samples of size N = 100, with replacement. Results are
shown in Fig. 14. In Fig. 14a, we plot a histogram of the mean
melt pond fraction determined from these 1000 samples. The
means determined from sets that contained randomly dis-
tributed image areas, are in red. The means determined from
sets of adjacent image areas are in blue. Although both sets
represent samples of the same total image area, the one com-
posed of independent subsets randomly selected from across
the image does a much better job of representing the mean
value, with a smaller standard deviation.

Estimating the mean of a complete image by sampling ran-
domly selected areas of the image becomes a simple statistics
problem. The sample size needed to estimate a population
mean to within a certain confidence interval and margin of
error can be determined with the formula

n=

(
Zσ

ME

)2

, (3)

where n is the sample size, Z is the z score for the confi-
dence interval required, σ is the population standard devia-
tion, and ME is the margin of error. The standard deviation of
1000 random samples with size 100 (Fig. 14a) is∼ 0.05. The

Figure 13. Convergence of melt pond fraction (a) and ice frac-
tion (b) for a WorldView image collected on 25 June 2014 at 72◦ N,
128◦W as the area evaluated is increased. Small blue dots represent
individual image subsets. For segments of a given size, black dots
represent the mean value of those samples, red dots represent the
95 % prediction interval, and purple dots show the 95 % prediction
interval for the same total area, but calculated from 100 randomly
placed, smaller, samples. Cyan shaded area represents the error in
determination expected from the processing method.

mean melt pond fraction in Fig. 14a is 0.41. To match the
sum of internal (2–4 %) and external errors in our processing
algorithm (Sect. 5.1) the margin of error is 0.016 (i.e., 4 %
of 0.41). With σ ≈ 0.05, ME= 0.016, and assuming a 95 %
confidence interval (Z = 1.96), Eq. (3) gives a required sam-
ple size of 38. In other words, 38 random samples of size 100
can predict the mean melt pond fraction of the entire image,
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Figure 14. Histogram of melt pond fraction (a) and ice fraction (b) for 1000 samples, where each sample is the mean surface fraction
within 100, 50 m by 50 m, squares. The 100 squares were either randomly distributed across the image (red) or adjacent to each other (blue).
Calculated from a 25 June 2014 WorldView image.

±4 %, with 95 % confidence. A total of 38 samples of size
100 corresponds to an image area of ∼ 10 km2, significantly
smaller than the total image size.

In order to show these results visually, we return to Fig. 13
and place another set of 95 % prediction interval bounds (pur-
ple dots). These bounds represent the prediction interval for
a random sample of size necessary for the total area to equal
the area on the x axis. The result is quite powerful. By pro-
cessing as little as 10 km2 of the image, collected from sam-
ples randomly distributed across the area, we can determine
aggregate melt pond fraction to within 4 % of the true value
with a confidence of 95 %. For large-scale processing we
suggest that when the sample confidence interval is below
the image processing technique accuracy, sampling of larger
areas is no longer necessary.

A similar analysis is presented in Figs. 13b and 14b for
ice fraction. While the WorldView image is likely not large
enough to represent the aggregate scale for ice fraction, ran-
domly sampling the image still provides an expedient way to
determine the mean ice fraction of the image within certain
bounds, while processing only a small fraction of the image.
Calculating the 95 % prediction interval of random samples
representing the total image area shown on the x axis (purple
dots) again shows that the total image mean can be estimated
by calculating only a small portion of the total image.

These explorations of image sampling permit us to recom-
mend that users can estimate the total image pond fraction

by selecting N sets of 100 randomly selected 50 m× 50 m
regions (where N is selected to provide the desired confi-
dence interval and margin of error). We suggest a standard,
which incorporates some “safety factor”, for processing im-
agery to produce estimates of melt pond fraction should be
to process 25 km2 of area contained in at least 100 randomly
located image subsets from domains of at least 100 km2. We
note that flying over a domain and collecting imagery along
flight tracks will not count as fully “random” in this con-
text, since the images along-track are spatially correlated.
Since a WorldView image does not represent the aggregate
scale for ice fraction, we cannot recommend a specific sam-
pling strategy for the aggregate scale. However, processing
of 25 km2 of imagery from randomly distributed subsets pro-
duces a prediction interval around the total image mean of
approximately the same size as the upper limit of uncertainty
for our image processing technique. The statistical approach
for determining aggregate statistics should not depend on the
seasonality of the image nor the type of image used so long
as the total area observed is sufficiently greater than the vari-
ability in the surface feature being investigated. However,
these recommendations should be considered provisional,
because they are subject to impacts from differences in ice
property correlation scales, and should be further evaluated
for accuracy as larger processed datasets are available.
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5.3 Community adoption

We have provided a free distribution of the OSSP algo-
rithm and the training sets discussed in Sects. 3.4 and
4 as a companion to this publication, complete with de-
tailed startup guides and documentation. This OSSP algo-
rithm has been implemented entirely in Python using open-
source resources with release to additional users in mind.
The code, along with documentation, instructional guide-
lines, and premade training sets (those used for the anal-
yses herein) is available at https://github.com/wrightni/ossp
(https://doi.org/10.5281/zenodo.1133689). The software is
packaged with default parameters and version-controlled
training sets for four different imagery sources. The pack-
age includes a graphical user interface to allow users to build
custom training datasets that suit their individual needs. The
algorithm was constructed with the flexibility to allow for the
classification of any number of features given an appropriate
training dataset.

Our intention is that by providing easy access to the code
in an open-source format, we will enable both specific in-
quiries and larger-scale image processing that supports com-
munity efforts at general sea ice monitoring. We plan to con-
tinue improving and updating the code as it gains users and
we receive community feedback. We hope to encourage oth-
ers to design their own features and add-ons. Since the pre-
dictive ability of the machine learning algorithm improves as
more training data are added, we wish to strongly encourage
the use of the GUI to produce additional training sets and we
plan to collate other users training sets into improved train-
ing versions. See documentation of the training set creation
GUI for more information on how to share a training set.

The OSSP algorithm helps to bring the goal of having
a standardized method for deriving geophysical parameters
from high-resolution optical sea ice imagery closer to real-
ity. In the larger picture, developing such a tool is only the
first step. We recall that the motivation behind this develop-
ment was the need to quantify sea ice surface conditions in a
way that could enable better understanding of the processes
driving changes in sea ice cover. The value of the toolkit will
only be realized if it is used for these scientific inquiries. We
look forward to working with imagery owners to facilitate
processing of additional datasets.

6 Conclusions

We have implemented a method for classifying the sea ice
surface conditions from high-resolution optical imagery of
sea ice. We designed the system to have a low barrier to en-
try, by coding it in an open-source format, providing detailed
documentation, and releasing it publicly for community use.
The code identifies the dominant surface types found in sea
ice imagery (open water, melt ponds and submerged ice, and
snow and ice) with accuracy that averages 96 % – comparable

to the consistency between manual expert human classifica-
tions of the imagery. The algorithm is shown to be capable of
classifying imagery from a range of image sensing platforms
including panchromatic and pansharpened WorldView satel-
lite imagery, aerial sRGB imagery, and optical DMS imagery
from NASA IceBridge missions. Furthermore, the software
can process imagery collected across the seasonal evolution
of the sea ice from early spring through complete ice melt,
demonstrating it is robust even as the characteristics of the
ice features seasonally evolve. We conclude, based on our
error analysis, that this automatic image processing method
can be used with confidence in analyzing the melt pond evo-
lution at remote sites.

With appropriate processing, high-resolution imagery col-
lections should be a powerful tool for standardized and rou-
tine observation of sea ice surface characteristics. We hope
that in providing easy access to the methods and algorithm
developed herein, we will facilitate the sea ice community’s
convergence on a standardized method for processing high-
resolution optical imagery either by adoption of this method
or by suggestion of an alternate method complete with code
release and error analysis.

Data availability. The OSSP algorithm code is
available from https://github.com/wrightni/ossp
(https://doi.org/10.5281/zenodo.1133689; Wright, 2017). Im-
age data and processing results are available at the NSF Arctic
Data Center (ADC). Raw and preprocessed image data from
DigitalGlobe WorldView images are not available due to copyright,
but can be acquired from DigitalGlobe or the Polar Geospatial
Center at the University of Minnesota.
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