Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-81-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/tc-11-81-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region
Stephan Gruber
CORRESPONDING AUTHOR
Carleton University, Ottawa, Canada
Renate Fleiner
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Emilie Guegan
Norwegian University of Science and Technology, Trondheim, Norway
Prajjwal Panday
Nichols College, Dudley, MA, USA
Marc-Olivier Schmid
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Dorothea Stumm
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Philippus Wester
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
Yinsheng Zhang
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Lin Zhao
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, China
Related authors
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
This article is included in the Encyclopedia of Geosciences
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
This article is included in the Encyclopedia of Geosciences
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
This article is included in the Encyclopedia of Geosciences
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021, https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Short summary
We present a new method to compute temperature changes with melting and freezing – a fundamental challenge in cryosphere research – extremely efficiently and with guaranteed correctness of the energy balance for any time step size. This is a key feature since the integration time step can then be chosen according to the timescale of the processes to be studied, from seconds to days.
This article is included in the Encyclopedia of Geosciences
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary
Short summary
We study the surface energy balance from a cold-arid permafrost environment in the Indian Himalayan region. The GEOtop model was used for the modelling of surface energy balance. Our results show that the variability in the turbulent heat fluxes is similar to that reported from the seasonally frozen ground and permafrost regions of the Tibetan Plateau. Further, the low relative humidity could be playing a critical role in the surface energy balance and the permafrost processes.
This article is included in the Encyclopedia of Geosciences
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
This article is included in the Encyclopedia of Geosciences
Stephan Gruber
The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020, https://doi.org/10.5194/tc-14-1437-2020, 2020
Short summary
Short summary
A simple method to record heave and subsidence of the land surface at specific field locations is described. Hourly observations from three sites, over two winters and one summer, are analyzed and discussed. The data are rich in features that point to the influence of freezing and thawing and of wetting and drying of the soil. This type of observation may offer new insight into the processes of heat and mass transfer in soil and help to monitor climate change impacts.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019, https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary
Short summary
GlobSim is a tool for simulating land-surface processes and phenomena at point locations globally, even where no site-specific meteorological observations exist. This is important because simulation can add insight to the analysis of observations or help in anticipating climate-change impacts and because site-specific simulation can help in model evaluation.
This article is included in the Encyclopedia of Geosciences
Joe R. Melton, Diana L. Verseghy, Reinel Sospedra-Alfonso, and Stephan Gruber
Geosci. Model Dev., 12, 4443–4467, https://doi.org/10.5194/gmd-12-4443-2019, https://doi.org/10.5194/gmd-12-4443-2019, 2019
Short summary
Short summary
Soils in cold regions store large amounts of carbon that could be released to the atmosphere if the soils thaw. To best simulate these soils, we explored different configurations and parameterizations of the CLASS-CTEM model and compared to observations. The revised model with a deeper soil column, new soil depth dataset, and inclusion of moss simulated greatly improved annual thaw depths and ground temperatures. We estimate subgrid-scale features limit further improvements against observations.
This article is included in the Encyclopedia of Geosciences
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Stephan Gruber, and Tingjun Zhang
Geosci. Model Dev., 10, 2905–2923, https://doi.org/10.5194/gmd-10-2905-2017, https://doi.org/10.5194/gmd-10-2905-2017, 2017
Short summary
Short summary
To derive the air temperature in mountain enviroments, we propose a new downscaling method with a spatially variable magnitude of surface effects. Our findings suggest that the difference between near-surface air temperature and upper-air temerpature is a good proxy of surface effects. It can be used to improve downscaling results, especially in valleys with strong surface effects and cold air pooling during winter.
This article is included in the Encyclopedia of Geosciences
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, https://doi.org/10.5194/esurf-4-103-2016, 2016
M.-O. Schmid, P. Baral, S. Gruber, S. Shahi, T. Shrestha, D. Stumm, and P. Wester
The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, https://doi.org/10.5194/tc-9-2089-2015, 2015
Short summary
Short summary
The extent and distribution of permafrost in the mountainous parts of the Hindu Kush Himalayan (HKH) region are largely unknown. This article provides a first-order assessment of the two available permafrost maps in the HKH region based on the mapping of rock glaciers in Google Earth. The Circum-Arctic Map of Permafrost and Ground Ice Conditions does not reproduce mapped conditions in the HKH region adequately, whereas the Global Permafrost Zonation Index does so with more success.
This article is included in the Encyclopedia of Geosciences
A. Hasler, M. Geertsema, V. Foord, S. Gruber, and J. Noetzli
The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015, https://doi.org/10.5194/tc-9-1025-2015, 2015
Short summary
Short summary
In this paper we describe surface and thermal offsets derived from distributed measurements at seven field sites in British Columbia. Key findings are i) a small variation of the surface offsets between surface types; ii) small thermal offsets at all sites; iii) a clear influence of the micro-topography due to snow cover effects; iv) a north--south difference of the surface offset of 4°C in vertical bedrock and of 1.5–-3°C on open gentle slopes; v) only small macroclimatic differences.
This article is included in the Encyclopedia of Geosciences
J. Fiddes, S. Endrizzi, and S. Gruber
The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, https://doi.org/10.5194/tc-9-411-2015, 2015
Short summary
Short summary
This paper demonstrates a new land surface modelling approach that uses globally available data sets to generate high-resolution simulation results of land surface processes. We successfully simulate a highly resolution-dependent variable, ground surface temperatures, over the entire Swiss Alps at high resolution. We use a large evaluation data set to test the model. We suggest that this scheme represents a useful step in application of numerical models over large areas in heterogeneous terrain.
This article is included in the Encyclopedia of Geosciences
S. Endrizzi, S. Gruber, M. Dall'Amico, and R. Rigon
Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, https://doi.org/10.5194/gmd-7-2831-2014, 2014
Short summary
Short summary
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and below the soil surface, reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing and simulates snow cover. The core components of GEOtop 2.0. are described. Based on a synthetic simulation, it is shown that the interaction of processes represented in GEOtop 2.0. can result in phenomena that are relevant for applications involving frozen soils.
This article is included in the Encyclopedia of Geosciences
V. Wirz, J. Beutel, S. Gruber, S. Gubler, and R. S. Purves
Nat. Hazards Earth Syst. Sci., 14, 2503–2520, https://doi.org/10.5194/nhess-14-2503-2014, https://doi.org/10.5194/nhess-14-2503-2014, 2014
J. Fiddes and S. Gruber
Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, https://doi.org/10.5194/gmd-7-387-2014, 2014
S. Gubler, S. Endrizzi, S. Gruber, and R. S. Purves
Geosci. Model Dev., 6, 1319–1336, https://doi.org/10.5194/gmd-6-1319-2013, https://doi.org/10.5194/gmd-6-1319-2013, 2013
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
This article is included in the Encyclopedia of Geosciences
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
This article is included in the Encyclopedia of Geosciences
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
This article is included in the Encyclopedia of Geosciences
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
This article is included in the Encyclopedia of Geosciences
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021, https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Short summary
We present a new method to compute temperature changes with melting and freezing – a fundamental challenge in cryosphere research – extremely efficiently and with guaranteed correctness of the energy balance for any time step size. This is a key feature since the integration time step can then be chosen according to the timescale of the processes to be studied, from seconds to days.
This article is included in the Encyclopedia of Geosciences
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary
Short summary
We study the surface energy balance from a cold-arid permafrost environment in the Indian Himalayan region. The GEOtop model was used for the modelling of surface energy balance. Our results show that the variability in the turbulent heat fluxes is similar to that reported from the seasonally frozen ground and permafrost regions of the Tibetan Plateau. Further, the low relative humidity could be playing a critical role in the surface energy balance and the permafrost processes.
This article is included in the Encyclopedia of Geosciences
Yingzhao Ma, Xun Sun, Haonan Chen, Yang Hong, and Yinsheng Zhang
Hydrol. Earth Syst. Sci., 25, 359–374, https://doi.org/10.5194/hess-25-359-2021, https://doi.org/10.5194/hess-25-359-2021, 2021
Short summary
Short summary
A two-stage blending approach is proposed for the data fusion of multiple satellite precipitation estimates (SPEs), which firstly reduces the systematic errors of original SPEs based on a Bayesian correction model and then merges the bias-corrected SPEs with a Bayesian weighting model. The model is evaluated in the warm season of 2010–2014 in the northeastern Tibetan Plateau. Results show that the blended SPE is greatly improved compared with the original SPEs, even in heavy rainfall events.
This article is included in the Encyclopedia of Geosciences
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
This article is included in the Encyclopedia of Geosciences
Stephan Gruber
The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020, https://doi.org/10.5194/tc-14-1437-2020, 2020
Short summary
Short summary
A simple method to record heave and subsidence of the land surface at specific field locations is described. Hourly observations from three sites, over two winters and one summer, are analyzed and discussed. The data are rich in features that point to the influence of freezing and thawing and of wetting and drying of the soil. This type of observation may offer new insight into the processes of heat and mass transfer in soil and help to monitor climate change impacts.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019, https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary
Short summary
GlobSim is a tool for simulating land-surface processes and phenomena at point locations globally, even where no site-specific meteorological observations exist. This is important because simulation can add insight to the analysis of observations or help in anticipating climate-change impacts and because site-specific simulation can help in model evaluation.
This article is included in the Encyclopedia of Geosciences
Joe R. Melton, Diana L. Verseghy, Reinel Sospedra-Alfonso, and Stephan Gruber
Geosci. Model Dev., 12, 4443–4467, https://doi.org/10.5194/gmd-12-4443-2019, https://doi.org/10.5194/gmd-12-4443-2019, 2019
Short summary
Short summary
Soils in cold regions store large amounts of carbon that could be released to the atmosphere if the soils thaw. To best simulate these soils, we explored different configurations and parameterizations of the CLASS-CTEM model and compared to observations. The revised model with a deeper soil column, new soil depth dataset, and inclusion of moss simulated greatly improved annual thaw depths and ground temperatures. We estimate subgrid-scale features limit further improvements against observations.
This article is included in the Encyclopedia of Geosciences
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
This article is included in the Encyclopedia of Geosciences
Y. Zhang, X. Zou, and H. Gao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1817–1823, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1817-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1817-2019, 2019
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Tingjun Zhang, Qingbai Wu, Yu Sheng, Lin Zhao, and Defu Zou
The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019, https://doi.org/10.5194/tc-13-511-2019, 2019
Short summary
Short summary
Many maps have been produced to estimate permafrost distribution over the Qinghai–Tibet Plateau. However the evaluation and inter-comparisons of them are poorly understood due to limited in situ measurements. We provided an in situ inventory of evidence of permafrost presence or absence, with 1475 sites over the Qinghai–Tibet Plateau. Based on the in situ measurements, our evaluation results showed a wide range of map performance, and the estimated permafrost region and area are extremely large.
This article is included in the Encyclopedia of Geosciences
René Reijer Wijngaard, Hester Biemans, Arthur Friedrich Lutz, Arun Bhakta Shrestha, Philippus Wester, and Walter Willem Immerzeel
Hydrol. Earth Syst. Sci., 22, 6297–6321, https://doi.org/10.5194/hess-22-6297-2018, https://doi.org/10.5194/hess-22-6297-2018, 2018
Short summary
Short summary
This study assesses the combined impacts of climate change and socio-economic developments on the future water gap for the Indus, Ganges, and Brahmaputra river basins until the end of the 21st century. The results show that despite projected increases in surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap, indicating that socio-economic changes will be the key driver in the evolving water gap.
This article is included in the Encyclopedia of Geosciences
Defu Zou, Lin Zhao, Yu Sheng, Ji Chen, Guojie Hu, Tonghua Wu, Jichun Wu, Changwei Xie, Xiaodong Wu, Qiangqiang Pang, Wu Wang, Erji Du, Wangping Li, Guangyue Liu, Jing Li, Yanhui Qin, Yongping Qiao, Zhiwei Wang, Jianzong Shi, and Guodong Cheng
The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, https://doi.org/10.5194/tc-11-2527-2017, 2017
Short summary
Short summary
The area and distribution of permafrost on the Tibetan Plateau are unclear and controversial. This paper generated a benchmark map based on the modified remote sensing products and validated it using ground-based data sets. Compared with two existing maps, the new map performed better and showed that permafrost covered areas of 1.06 × 106 km2. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Stephan Gruber, and Tingjun Zhang
Geosci. Model Dev., 10, 2905–2923, https://doi.org/10.5194/gmd-10-2905-2017, https://doi.org/10.5194/gmd-10-2905-2017, 2017
Short summary
Short summary
To derive the air temperature in mountain enviroments, we propose a new downscaling method with a spatially variable magnitude of surface effects. Our findings suggest that the difference between near-surface air temperature and upper-air temerpature is a good proxy of surface effects. It can be used to improve downscaling results, especially in valleys with strong surface effects and cold air pooling during winter.
This article is included in the Encyclopedia of Geosciences
Xiaowen Wang, Lin Liu, Lin Zhao, Tonghua Wu, Zhongqin Li, and Guoxiang Liu
The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, https://doi.org/10.5194/tc-11-997-2017, 2017
Short summary
Short summary
Rock glaciers are abundant in high mountains in western China but have been ignored for 20 years. We used a new remote-sensing-based method to map active rock glaciers in the Chinese part of the Tien Shan and compiled an inventory of 261 active rock glaciers and included quantitative information about their locations, geomorphic parameters, and downslope velocities. Our dataset suggests that the lower limit of permafrost there is 2500–2800 m.
This article is included in the Encyclopedia of Geosciences
Ji Chen, Yu Sheng, Qingbai Wu, Lin Zhao, Jing Li, and Jingyi Zhao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-134, https://doi.org/10.5194/tc-2016-134, 2016
Revised manuscript not accepted
Short summary
Short summary
The extreme thin and short-time snow cover in the northeastern Qinghai-Tibet plateau is predominantly during spring and autumn. Removal of seasonal snow cover is beneficial for cooling the active layer in the first few years. Seasonal snow cover maintains the high water content of the active layer because of the inhibitory action of snow cover on the evaporation capacity in the natural site during the daytime and in summer. Snow removal can therefore lead to a rapid decrease of soil moisture.
This article is included in the Encyclopedia of Geosciences
Shengyun Chen, Wenjie Liu, Qian Zhao, Lin Zhao, Qingbai Wu, Xingjie Lu, Shichang Kang, Xiang Qin, Shilong Chen, Jiawen Ren, and Dahe Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-80, https://doi.org/10.5194/tc-2016-80, 2016
Revised manuscript not accepted
Short summary
Short summary
Experimental warming was manipulated using open top chambers in alpine grassland ecosystem in the permafrost regions of the Qinghai-Tibet Plateau. The results revealed variations of earlier thawing, later freezing and longer freezing-thawing periods in shallow soil. Further, the estimated permafrost table declined under the warming scenarios. The work will be helpful to evaluate the stability of Qinghai-Tibet Railway/Highway and estimate the release of carbon under the future climate warming.
This article is included in the Encyclopedia of Geosciences
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, https://doi.org/10.5194/esurf-4-103-2016, 2016
M.-O. Schmid, P. Baral, S. Gruber, S. Shahi, T. Shrestha, D. Stumm, and P. Wester
The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, https://doi.org/10.5194/tc-9-2089-2015, 2015
Short summary
Short summary
The extent and distribution of permafrost in the mountainous parts of the Hindu Kush Himalayan (HKH) region are largely unknown. This article provides a first-order assessment of the two available permafrost maps in the HKH region based on the mapping of rock glaciers in Google Earth. The Circum-Arctic Map of Permafrost and Ground Ice Conditions does not reproduce mapped conditions in the HKH region adequately, whereas the Global Permafrost Zonation Index does so with more success.
This article is included in the Encyclopedia of Geosciences
A. Hasler, M. Geertsema, V. Foord, S. Gruber, and J. Noetzli
The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015, https://doi.org/10.5194/tc-9-1025-2015, 2015
Short summary
Short summary
In this paper we describe surface and thermal offsets derived from distributed measurements at seven field sites in British Columbia. Key findings are i) a small variation of the surface offsets between surface types; ii) small thermal offsets at all sites; iii) a clear influence of the micro-topography due to snow cover effects; iv) a north--south difference of the surface offset of 4°C in vertical bedrock and of 1.5–-3°C on open gentle slopes; v) only small macroclimatic differences.
This article is included in the Encyclopedia of Geosciences
J. Fiddes, S. Endrizzi, and S. Gruber
The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, https://doi.org/10.5194/tc-9-411-2015, 2015
Short summary
Short summary
This paper demonstrates a new land surface modelling approach that uses globally available data sets to generate high-resolution simulation results of land surface processes. We successfully simulate a highly resolution-dependent variable, ground surface temperatures, over the entire Swiss Alps at high resolution. We use a large evaluation data set to test the model. We suggest that this scheme represents a useful step in application of numerical models over large areas in heterogeneous terrain.
This article is included in the Encyclopedia of Geosciences
S. Endrizzi, S. Gruber, M. Dall'Amico, and R. Rigon
Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, https://doi.org/10.5194/gmd-7-2831-2014, 2014
Short summary
Short summary
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and below the soil surface, reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing and simulates snow cover. The core components of GEOtop 2.0. are described. Based on a synthetic simulation, it is shown that the interaction of processes represented in GEOtop 2.0. can result in phenomena that are relevant for applications involving frozen soils.
This article is included in the Encyclopedia of Geosciences
V. Wirz, J. Beutel, S. Gruber, S. Gubler, and R. S. Purves
Nat. Hazards Earth Syst. Sci., 14, 2503–2520, https://doi.org/10.5194/nhess-14-2503-2014, https://doi.org/10.5194/nhess-14-2503-2014, 2014
J. Fiddes and S. Gruber
Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, https://doi.org/10.5194/gmd-7-387-2014, 2014
P. Wagnon, C. Vincent, Y. Arnaud, E. Berthier, E. Vuillermoz, S. Gruber, M. Ménégoz, A. Gilbert, M. Dumont, J. M. Shea, D. Stumm, and B. K. Pokhrel
The Cryosphere, 7, 1769–1786, https://doi.org/10.5194/tc-7-1769-2013, https://doi.org/10.5194/tc-7-1769-2013, 2013
S. Gubler, S. Endrizzi, S. Gruber, and R. S. Purves
Geosci. Model Dev., 6, 1319–1336, https://doi.org/10.5194/gmd-6-1319-2013, https://doi.org/10.5194/gmd-6-1319-2013, 2013
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
Related subject area
Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Post-Little Ice Age rock wall permafrost evolution in Norway
Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal
The temperature-dependent shear strength of ice-filled joints in rock mass considering the effect of joint roughness, opening and shear rates
Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data
Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Long-term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Seismic physics-based characterization of permafrost sites using surface waves
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Passive seismic recording of cryoseisms in Adventdalen, Svalbard
Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model
Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
The ERA5-Land soil temperature bias in permafrost regions
Brief Communication: The reliability of gas extraction techniques for analysing CH4 and N2O compositions in gas trapped in permafrost ice wedges
Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
New ground ice maps for Canada using a paleogeographic modelling approach
Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada)
Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada
Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls
Microtopographic control on the ground thermal regime in ice wedge polygons
Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau
Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau
Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals
Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska
Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes
A new map of permafrost distribution on the Tibetan Plateau
Distinguishing between old and modern permafrost sources in the northeast Siberian land–shelf system with compound-specific δ2H analysis
Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century
New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco)
Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia
Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier
Numerical modelling of convective heat transport by air flow in permafrost talus slopes
Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland
Response of seasonal soil freeze depth to climate change across China
Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard
Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years
Weichselian permafrost depth in the Netherlands: a comprehensive uncertainty and sensitivity analysis
Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland
Presence of rapidly degrading permafrost plateaus in south-central Alaska
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024, https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
Short summary
Maps that show ground ice in permafrost at circumpolar or hemispherical scales offer only general depictions of broad patterns in ice content. In this paper, we show that using more detailed surficial geology in a ground ice computer model significantly improves the depiction of ground ice and makes the mapping useful for assessments of the effects of permafrost thaw and for reconnaissance planning of infrastructure routing.
This article is included in the Encyclopedia of Geosciences
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
This article is included in the Encyclopedia of Geosciences
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024, https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Short summary
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia, we find that post-industrialization permafrost warming has three "hotspots" in NE Canada, N Alaska, and W Siberia. The extent of near-surface permafrost has decreased substantially since 1850, with the largest area losses occurring in the last 50 years. The simulations also show that volcanic eruptions have in some cases counteracted the loss of near-surface permafrost for a few decades.
This article is included in the Encyclopedia of Geosciences
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023, https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.
This article is included in the Encyclopedia of Geosciences
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
This article is included in the Encyclopedia of Geosciences
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
This article is included in the Encyclopedia of Geosciences
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
This article is included in the Encyclopedia of Geosciences
Shibing Huang, Haowei Cai, Zekun Xin, and Gang Liu
The Cryosphere, 17, 1205–1223, https://doi.org/10.5194/tc-17-1205-2023, https://doi.org/10.5194/tc-17-1205-2023, 2023
Short summary
Short summary
In this study, the warming degradation mechanism of ice-filled joints is revealed, and the effect of temperature, normal stress, shear rate and joint opening on the shear strength of rough ice-filled joints is investigated. The shear rupture modes include shear cracking of joint ice and debonding of the ice–rock interface, which is related to the above factors. The bonding strength of the ice–rock interface is larger than the shear strength of joint ice when the temperature is below −1 ℃.
This article is included in the Encyclopedia of Geosciences
Yifeng Wang, Robert G. Way, Jordan Beer, Anika Forget, Rosamond Tutton, and Meredith C. Purcell
The Cryosphere, 17, 63–78, https://doi.org/10.5194/tc-17-63-2023, https://doi.org/10.5194/tc-17-63-2023, 2023
Short summary
Short summary
Peatland permafrost in northeastern Canada has been misrepresented by models, leading to significant underestimates of peatland permafrost and permafrost distribution along the Labrador Sea coastline. Our multi-stage, multi-mapper, consensus-based inventorying process, supported by field- and imagery-based validation efforts, identifies peatland permafrost complexes all along the coast. The highest density of complexes is found to the south of the current sporadic discontinuous permafrost limit.
This article is included in the Encyclopedia of Geosciences
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022, https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
Short summary
We implemented a new multi-layer snow scheme in the land surface scheme of ERA5-Land with revised snow densification parameterizations. The revised HTESSEL improved the representation of soil temperature in permafrost regions compared to ERA5-Land; in particular, warm bias in winter was significantly reduced, and the resulting modeled near-surface permafrost extent was improved.
This article is included in the Encyclopedia of Geosciences
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
This article is included in the Encyclopedia of Geosciences
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
This article is included in the Encyclopedia of Geosciences
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby
The Cryosphere, 16, 1157–1180, https://doi.org/10.5194/tc-16-1157-2022, https://doi.org/10.5194/tc-16-1157-2022, 2022
Short summary
Short summary
The knowledge of physical and mechanical properties of permafrost and its location is critical for the management of permafrost-related geohazards. Here, we developed a hybrid inverse and multiphase poromechanical approach to quantitatively estimate the physical and mechanical properties of a permafrost site. Our study demonstrates the potential of surface wave techniques coupled with our proposed data-processing algorithm to characterize a permafrost site more accurately.
This article is included in the Encyclopedia of Geosciences
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
This article is included in the Encyclopedia of Geosciences
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
This article is included in the Encyclopedia of Geosciences
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
This article is included in the Encyclopedia of Geosciences
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
This article is included in the Encyclopedia of Geosciences
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
This article is included in the Encyclopedia of Geosciences
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
This article is included in the Encyclopedia of Geosciences
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
This article is included in the Encyclopedia of Geosciences
Ji-Woong Yang, Jinho Ahn, Go Iwahana, Sangyoung Han, Kyungmin Kim, and Alexander Fedorov
The Cryosphere, 14, 1311–1324, https://doi.org/10.5194/tc-14-1311-2020, https://doi.org/10.5194/tc-14-1311-2020, 2020
Short summary
Short summary
Thawing permafrost may lead to decomposition of soil carbon and nitrogen and emission of greenhouse gases. Thus, methane and nitrous oxide compositions in ground ice may provide information on their production mechanisms in permafrost. We test conventional wet and dry extraction methods. We find that both methods extract gas from the easily extractable parts of the ice and yield similar results for mixing ratios. However, both techniques are unable to fully extract gas from the ice.
This article is included in the Encyclopedia of Geosciences
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
This article is included in the Encyclopedia of Geosciences
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
This article is included in the Encyclopedia of Geosciences
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019, https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary
Short summary
The active layer thickness (ALT) in middle-to-high northern latitudes from 1980 to 2017 was produced at 81 km2 resolution by a global land surface model (NASA's CLSM) with forcing fields from a reanalysis data set, MERRA-2. The simulated permafrost distribution and ALTs agree reasonably well with an observation-based map and in situ measurements, respectively. The accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT.
This article is included in the Encyclopedia of Geosciences
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
This article is included in the Encyclopedia of Geosciences
H. Brendan O'Neill, Stephen A. Wolfe, and Caroline Duchesne
The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, https://doi.org/10.5194/tc-13-753-2019, 2019
Short summary
Short summary
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating knowledge from recent studies. The model outputs we present reproduce observed regional ground ice conditions and are generally comparable with previous mapping. However, our results are more detailed and more accurately reflect ground ice conditions in many regions. The new mapping is an important step toward understanding terrain response to permafrost degradation in Canada.
This article is included in the Encyclopedia of Geosciences
Stephanie Coulombe, Daniel Fortier, Denis Lacelle, Mikhail Kanevskiy, and Yuri Shur
The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, https://doi.org/10.5194/tc-13-97-2019, 2019
Short summary
Short summary
This study provides a detailed description of relict glacier ice preserved in the permafrost of Bylot Island (Nunavut). We demonstrate that the 18O composition (-34.0 0.4 ‰) of the ice is consistent with the late Pleistocene age ice in the Barnes Ice Cap. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies could have significant impacts on permafrost geosystem landscape dynamics and ecosystems.
This article is included in the Encyclopedia of Geosciences
Robert G. Way, Antoni G. Lewkowicz, and Yu Zhang
The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, https://doi.org/10.5194/tc-12-2667-2018, 2018
Short summary
Short summary
Isolated patches of permafrost in southeast Labrador are among the southernmost lowland permafrost features in Canada. Local characteristics at six sites were investigated from Cartwright, NL (~ 54° N) to Blanc-Sablon, QC (~ 51° N). Annual ground temperatures varied from −0.7 °C to −2.3 °C with permafrost thicknesses of 1.7–12 m. Ground temperatures modelled for two sites showed permafrost disappearing at the southern site by 2060 and persistence beyond 2100 at the northern site only for RCP2.6.
This article is included in the Encyclopedia of Geosciences
Zeze Ran and Gengnian Liu
The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, https://doi.org/10.5194/tc-12-2327-2018, 2018
Short summary
Short summary
This article provides the first rock glacier inventory of Daxue Shan, south- eastern Tibetan Plateau. This study provides important data for exploring the relation between maritime periglacial environments and the development of rock glaciers on the south-eastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock glaciers found in a maritime setting.
This article is included in the Encyclopedia of Geosciences
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
This article is included in the Encyclopedia of Geosciences
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere, 12, 657–673, https://doi.org/10.5194/tc-12-657-2018, https://doi.org/10.5194/tc-12-657-2018, 2018
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
This article is included in the Encyclopedia of Geosciences
Youhua Ran, Xin Li, and Guodong Cheng
The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018, https://doi.org/10.5194/tc-12-595-2018, 2018
Short summary
Short summary
Approximately 88 % of the permafrost area in the 1960s has been thermally degraded in the past half century over the Qinghai–Tibetan Plateau. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88 m, 97 m, 155 m, 185 m, 161 m, and 250 m, respectively. This degradation may lead to increases in risks to infrastructure, flood, reductions in ecosystem resilience, and positive climate feedback.
This article is included in the Encyclopedia of Geosciences
Lin Liu and Kristine M. Larson
The Cryosphere, 12, 477–489, https://doi.org/10.5194/tc-12-477-2018, https://doi.org/10.5194/tc-12-477-2018, 2018
Short summary
Short summary
We demonstrate the use of reflected GPS signals to measure elevation changes over a permafrost area in northern Alaska. For the first time, we construct a daily-sampled time series of elevation changes over 12 summers. Our results show regular thaw subsidence within each summer and a secular subsidence trend of 0.3 cm per year. This method promises a new way to utilize GPS data in cold regions for studying frozen ground consistently and sustainably over a long time.
This article is included in the Encyclopedia of Geosciences
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, Rolf H. Reichle, Umakant Mishra, Donatella Zona, and Walter C. Oechel
The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, https://doi.org/10.5194/tc-12-145-2018, 2018
Short summary
Short summary
An important feature of the Arctic is large spatial heterogeneity in active layer conditions. We developed a modeling framework integrating airborne longwave radar and satellite data to investigate active layer thickness (ALT) sensitivity to landscape heterogeneity in Alaska. We find uncertainty in spatial and vertical distribution of soil organic carbon is the largest factor affecting ALT accuracy. Advances in remote sensing of soil conditions will enable more accurate ALT predictions.
This article is included in the Encyclopedia of Geosciences
Benjamin Mewes, Christin Hilbich, Reynald Delaloye, and Christian Hauck
The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, https://doi.org/10.5194/tc-11-2957-2017, 2017
Defu Zou, Lin Zhao, Yu Sheng, Ji Chen, Guojie Hu, Tonghua Wu, Jichun Wu, Changwei Xie, Xiaodong Wu, Qiangqiang Pang, Wu Wang, Erji Du, Wangping Li, Guangyue Liu, Jing Li, Yanhui Qin, Yongping Qiao, Zhiwei Wang, Jianzong Shi, and Guodong Cheng
The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, https://doi.org/10.5194/tc-11-2527-2017, 2017
Short summary
Short summary
The area and distribution of permafrost on the Tibetan Plateau are unclear and controversial. This paper generated a benchmark map based on the modified remote sensing products and validated it using ground-based data sets. Compared with two existing maps, the new map performed better and showed that permafrost covered areas of 1.06 × 106 km2. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
This article is included in the Encyclopedia of Geosciences
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Florence Magnin, Jean-Yves Josnin, Ludovic Ravanel, Julien Pergaud, Benjamin Pohl, and Philip Deline
The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, https://doi.org/10.5194/tc-11-1813-2017, 2017
Short summary
Short summary
Permafrost degradation in high mountain rock walls provokes destabilisation, constituting a threat for human activities. In the Mont Blanc massif, more than 700 rockfalls have been inventoried in recent years (2003, 2007–2015). Understanding permafrost evolution is thus crucial to sustain this densely populated area. This study investigates the changes in rock wall permafrost from 1850 to the recent period and possible optimistic or pessimistic evolutions during the 21st century.
This article is included in the Encyclopedia of Geosciences
Gonçalo Vieira, Carla Mora, and Ali Faleh
The Cryosphere, 11, 1691–1705, https://doi.org/10.5194/tc-11-1691-2017, https://doi.org/10.5194/tc-11-1691-2017, 2017
Short summary
Short summary
The Toubkal is the highest massif in North Africa (4167 m). Landforms and deposits above 3000 m show the effects of frost action in the present-day geomorphological dynamics, but data on ground temperatures were lacking. In this study ground surface temperature data measured across an altitudinal transect are presented and analysed for the first time. The highlight is the possible occurrence of permafrost at an elevation of 3800 m, which may be of high ecological and hydrological significance.
This article is included in the Encyclopedia of Geosciences
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
This article is included in the Encyclopedia of Geosciences
Gautier Davesne, Daniel Fortier, Florent Domine, and James T. Gray
The Cryosphere, 11, 1351–1370, https://doi.org/10.5194/tc-11-1351-2017, https://doi.org/10.5194/tc-11-1351-2017, 2017
Short summary
Short summary
This study presents data from Mont Jacques-Cartier, the highest summit in the Appalachians of south-eastern Canada, to demonstrate that the occurrence of contemporary permafrost body is associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. This study is an important preliminary step in modelling the regional spatial distribution of permafrost on the highest summits in eastern North America.
This article is included in the Encyclopedia of Geosciences
Jonas Wicky and Christian Hauck
The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, https://doi.org/10.5194/tc-11-1311-2017, 2017
Short summary
Short summary
Talus slopes are a widespread geomorphic feature, which may show permafrost conditions even at low elevation due to cold microclimates induced by a gravity-driven internal air circulation. We show for the first time a numerical simulation of this internal air circulation of a field-scale talus slope. Results indicate that convective heat transfer leads to a pronounced ground cooling in the lower part of the talus slope favoring the persistence of permafrost.
This article is included in the Encyclopedia of Geosciences
Graham L. Gilbert, Stefanie Cable, Christine Thiel, Hanne H. Christiansen, and Bo Elberling
The Cryosphere, 11, 1265–1282, https://doi.org/10.5194/tc-11-1265-2017, https://doi.org/10.5194/tc-11-1265-2017, 2017
Short summary
Short summary
We reconstruct the Holocene development of the Zackenberg River delta (northeast Greenland) using a combination of sedimentology, cryostratigraphy, and geochronology. We distinguish four major depositional environments and identify three cryofacies. We apply the principles of cryostratigraphy to infer the aggradational history of permafrost. This paper contains an archive of ground ice in epigenetic permafrost in northeast Greenland.
This article is included in the Encyclopedia of Geosciences
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Bin Cao, Xinyue Zhong, Hang Su, and Cuicui Mu
The Cryosphere, 11, 1059–1073, https://doi.org/10.5194/tc-11-1059-2017, https://doi.org/10.5194/tc-11-1059-2017, 2017
Short summary
Short summary
Previous research has paid significant attention to permafrost, e.g. active layer thickness, soil temperature, area extent, and associated degradation leading to other changes. However, less focus has been given to seasonally frozen ground and vast area extent. We combined data from more than 800 observation stations, as well as gridded data, to investigate soil freeze depth across China. The results indicate that soil freeze depth decreases with climate warming.
This article is included in the Encyclopedia of Geosciences
Carina Schuh, Andrew Frampton, and Hanne Hvidtfeldt Christiansen
The Cryosphere, 11, 635–651, https://doi.org/10.5194/tc-11-635-2017, https://doi.org/10.5194/tc-11-635-2017, 2017
Short summary
Short summary
This study investigates how soil moisture retention characteristics impact ice and moisture redistribution, heat transport and active layer thickness under permafrost conditions. This is relevant for understanding how climate change interacts with permafrost, which is important because there is much stored carbon in permafrost, which may be released to the atmosphere as permafrost degrades and may then act to further enhance climate warming.
This article is included in the Encyclopedia of Geosciences
Amund F. Borge, Sebastian Westermann, Ingvild Solheim, and Bernd Etzelmüller
The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, https://doi.org/10.5194/tc-11-1-2017, 2017
Short summary
Short summary
Palsas and peat plateaus are permafrost landforms in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. We have systematically mapped the occurrence of palsas and peat plateaus in northern Norway by interpretation of aerial images from the 1950s until today. The results show that about half of the area of palsas and peat plateaus has disappeared due to lateral erosion and melting of ground ice in the last 50 years.
This article is included in the Encyclopedia of Geosciences
Joan Govaerts, Koen Beerten, and Johan ten Veen
The Cryosphere, 10, 2907–2922, https://doi.org/10.5194/tc-10-2907-2016, https://doi.org/10.5194/tc-10-2907-2016, 2016
Short summary
Short summary
The Rupelian Clay in the Netherlands is currently the subject of a feasibility study with respect to the storage of radioactive waste in the Netherlands (OPERA-project). Many features need to be considered in the assessment of the long-term evolution of the natural environment surrounding a geological waste disposal facility. One of these is permafrost development since it may have an impact on various components of the disposal system.
This article is included in the Encyclopedia of Geosciences
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
This article is included in the Encyclopedia of Geosciences
Benjamin M. Jones, Carson A. Baughman, Vladimir E. Romanovsky, Andrew D. Parsekian, Esther L. Babcock, Eva Stephani, Miriam C. Jones, Guido Grosse, and Edward E. Berg
The Cryosphere, 10, 2673–2692, https://doi.org/10.5194/tc-10-2673-2016, https://doi.org/10.5194/tc-10-2673-2016, 2016
Short summary
Short summary
We combined field data collection with remote sensing data to document the presence and rapid degradation of permafrost in south-central Alaska during 1950–present. Ground temperature measurements confirmed permafrost presence in the region, but remotely sensed images showed that permafrost plateau extent decreased by 60 % since 1950. Better understanding these vulnerable permafrost deposits is important for predicting future permafrost extent across all permafrost regions that are warming.
This article is included in the Encyclopedia of Geosciences
Cited articles
Allen, S. K., Fiddes, J., Linsbauer, A., Randhawa, S. S., Saklani, B., and Salzmann, N.: Permafrost studies in Kullu district, Himachal Pradesh, Curr. Sci., 111, 557–560, 2016.
Arenson, L. U., Springman, S. M., and Sego, D. C.: The rheology of frozen soils, Appl. Rheol., 17, 1–14, 2007.
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33° S), Permafrost Periglac., 21, 42–53, https://doi.org/10.1002/ppp.669, 2010.
Bajracharya, S. and Shrestha, B.: The status of glaciers in the Hindu Kush-Himalayas, Kathmandu, Nepal, 2011.
Bao, X. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau, J. Clim., 26, 206–214, https://doi.org/10.1175/JCLI-D-12-00056.1, 2013.
Barsch, D. and Jakob, M.: Mass transport by active rockglaciers in the Khumbu Himalaya, Geomorphology, 26, 215–222, https://doi.org/10.1016/S0169-555X(98)00060-9, 1998.
Benn, D. I. and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments, Quatern. Int., 65/66, 15–29, https://doi.org/10.1016/S1040-6182(99)00034-8, 2000.
Benn, D. I. and Owen, L. A.: The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion, J. Geol. Soc. London, 155, 353–363, https://doi.org/10.1144/gsjgs.155.2.0353, 1998.
Bense, V. F., Kooi, H., Ferguson, G., and Read, T.: Permafrost degradation as a control on hydrogeological regime shifts in a warming climate, J. Geophys. Res., 117, F03036, https://doi.org/10.1029/2011JF002143, 2012.
Bhutiyani, M. R., Kale, V. S., and Pawar, N. J.: Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century, Clim. Change, 85, 159–177, https://doi.org/10.1007/s10584-006-9196-1, 2007.
Blöthe, J. H. and Korup, O.: Millennial lag times in the Himalayan sediment routing system, Earth Planet. Sc. Lett., 382, 38–46, https://doi.org/10.1016/j.epsl.2013.08.044, 2013.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012.
Böhner, J.: General climatic controls and topoclimatic variations in Central and High Asia, Boreas, 35, 279–295, https://doi.org/10.1111/j.1502-3885.2006.tb01158.x, 2006.
Bolch, T. and Gorbunov, A. P.: Characteristics and origin of rock glaciers in northern Tien Shan (Kazakhstan/Kyrgyzstan), Permafrost Periglac., 25, 320–332, https://doi.org/10.1002/ppp.1825, 2014.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012.
Bommer, C., Phillips, M., and Arenson, L.: Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost, Permafrost Periglac., 21, 97–104, 2010.
Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037, 2006.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Boulder, Color. USA Natl. Snow Ice Data Center, 1998.
Brown, R. J. E. and Pewe, T. L.: Distribution of permafrost in North America and its relationship to the environment: a review, in Permafrost: North American Contribution, Second International Conference, 71–100, 1973.
Buchli, T., Merz, K., Zhou, X., Kinzelbach, W., and Springman, S. M.: Characterization and monitoring of the Furggwanghorn rock glacier, Turtmann Valley, Switzerland: results from 2010 to 2012, Vadose Zone J., 12, https://doi.org/10.2136/vzj2012.0067, 2013.
Burger, K. C., Degenhardt, J. J., and Giardino, J. R.: Engineering geomorphology of rock glaciers, Geomorphology, 31, 93–132, https://doi.org/10.1016/S0169-555X(99)00074-4, 1999.
Burn, C. R. and Smith, C. A. S.: Observations of the “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada, Arctic, 41, 99–104, https://doi.org/10.14430/arctic1700, 1988.
Cheng, G. and Jin, H.: Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China, Hydrogeol. J., 21, 5–23, https://doi.org/10.1007/s10040-012-0927-2, 2012.
Clark, I. D., Lauriol, B., Harwood, L., and Marschner, M.: Groundwater contributions to discharge in a permafrost setting, Big Fish River, N.W.T., Canada, Arct. Antarct. Alp. Res., 33, 62–69, https://doi.org/10.2307/1552278, 2001.
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., and Calves, G.: Correlation of Himalayan exhumation rates and Asian monsoon intensity, Nat. Geosci., 1, 875–880, https://doi.org/10.1038/ngeo351, 2008.
Delaloye, R. and Lambiel, C.: Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps), Nor. Geogr. Tidsskr. – Nor. J. Geogr., 59, 194–203, https://doi.org/10.1080/00291950510020673, 2005.
Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Hausmann, H., Ikeda, A., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, C., Mihajlovic, D., Staub, B., Roer, I., and Thibert, E.: Recent interannual variations of rock glacier creep in the European Alps, Proceeding Ninth Int. Conf. Permafr., 343–348, 2008.
Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W., Chang, C.-H., Delrieu, G., Hong, Y., Hsu, Y. C., Lavado-Casimiro, W., Manz, B., Moges, S., Nikolopoulos, E. I., Sahlu, D., Salerno, F., Rodríguez-Sánchez, J.-P., Vergara, H. J., and Yilmaz, K. K.: Multiregional satellite precipitation products evaluation over complex terrain, J. Hydrometeorol., 17, 1817–1836, https://doi.org/10.1175/JHM-D-15-0197.1, 2016.
Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014.
Etzelmüller, B. and Hagen, J. O.: Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard, Geol. Soc. London, Spec. Publ., 242, 11–27, 2005.
Fiddes, J. and Gruber, S.: TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales, Geosci. Model Dev., 5, 1245–1257, https://doi.org/10.5194/gmd-5-1245-2012, 2012.
Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, 2014.
Fiddes, J., Endrizzi, S., and Gruber, S.: Large-area land surface simulations in heterogeneous terrain driven by global data sets: application to mountain permafrost, The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, 2015.
Fort, M. and van Vliet-Lanoe, B.: Permafrost and periglacial environment of Western Tibet, Landf. Anal., 5, 25–29, 2007.
Fowler, H. J. and Archer, D. R.: Conflicting signals of climatic change in the upper Indus basin, J. Clim., 19, 4276–4293, https://doi.org/10.1175/JCLI3860.1, 2006.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol. Process., 23, 169–182, https://doi.org/10.1002/hyp.7196, 2009.
Fuchs, M., Kuhry, P., and Hugelius, G.: Low below-ground organic carbon storage in a subarctic Alpine permafrost environment, The Cryosphere, 9, 427–438, https://doi.org/10.5194/tc-9-427-2015, 2015.
Fujii, Y. and Higuchi, K.: Ground temperature and its relation to permafrost occurrences in the Khumbu region and Hidden Valley, J. Japanese Soc. Snow Ice, 38, 125–128, https://doi.org/10.5331/seppyo.38.Special_125, 1976.
Fujita, K., Sakai, A., Takenaka, S., Nuimura, T., Surazakov, A. B., Sawagaki, T., and Yamanokuchi, T.: Potential flood volume of Himalayan glacial lakes, Nat. Hazards Earth Syst. Sci., 13, 1827–1839, https://doi.org/10.5194/nhess-13-1827-2013, 2013.
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009, Glob. Planet. Change, 75, 47–55, https://doi.org/10.1016/j.gloplacha.2010.10.003, 2011.
Gärtner-Roer, I.: Sediment transfer rates of two active rockglaciers in the Swiss Alps, Geomorphology, 167–168, 45–50, https://doi.org/10.1016/j.geomorph.2012.04.013, 2012.
Geertsema, M., Hungr, O., Schwab, J. W., and Evans, S. G.: A large rockslide–debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada, Eng. Geol., 83, 64–75, https://doi.org/10.1016/j.enggeo.2005.06.025, 2006a.
Geertsema, M., Clague, J. J., Schwab, J. W., and Evans, S. G.: An overview of recent large catastrophic landslides in northern British Columbia, Canada, Eng. Geol., 83, 120–143, https://doi.org/10.1016/j.enggeo.2005.06.028, 2006b.
Girard, L., Gruber, S., Weber, S., and Beutel, J.: Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock, Geophys. Res. Lett., 40, 1748–1753, https://doi.org/10.1002/grl.50384, 2013.
Gold, L. W. and Lachenbruch, A. H.: Thermal conditions in permafrost: a review of North American literature, in North American Contribution to the Second International Conference on Permafrost, 3–25, National Research Council Canada, 1973.
Goodrich, L. E.: The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421–432, https://doi.org/10.1139/t82-047, 1982.
Gorbunov, A. P.: Permafrost investigations in high-mountain regions, Arctic Alpine Res., 10, 283–294, 1978.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S. and Haeberli, W.: Mountain permafrost, in: Permafrost Soils, edited by: Margesin, R., 33–44, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
Gruber, S. and Hoelzle, M.: The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism, in: Proceedings of the 9th International Conference on Permafrost 2008, 557–561, Fairbanks, Alaska, USA, 2008.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett., 31, L13504, https://doi.org/10.1029/2004GL020051, 2004a.
Gruber, S., Hoelzle, M., and Haeberli, W.: Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences, Permafrost Periglac., 15, 299–307, https://doi.org/10.1002/ppp.501, 2004b.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain, The Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Gubler, S., Endrizzi, S., Gruber, S., and Purves, R. S.: Sensitivities and uncertainties of modeled ground temperatures in mountain environments, Geosci. Model Dev., 6, 1319–1336, https://doi.org/10.5194/gmd-6-1319-2013, 2013.
Guodong, C.: The mechanism of repeated-segregation for the formation of thick layered ground ice, Cold Reg. Sci. Technol., 8, 57–66, https://doi.org/10.1016/0165-232X(83)90017-4, 1983.
Gutmann, E., Barstad, I., Clark, M., Arnold, J., and Rasmussen, R.: The Intermediate Complexity Atmospheric Research Model (ICAR), J. Hydrometeorol., 17, 957–973, https://doi.org/10.1175/JHM-D-15-0155.1, 2016.
Haeberli, W.: Investigating glacier-permafrost relationships in high-mountain areas: historical background, selected examples and research needs, Geol. Soc. London, Spec. Publ., 242, 29–37, 2005.
Haeberli, W., Huggel, C., Kääb, A., Zgraggen-Oswald, S., Polkvoj, A., Galushkin, I., Zotikov, I., and Osokin, N.: The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus, J. Glaciol., 50, 533–546, https://doi.org/10.3189/172756504781829710, 2004.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.: Mountain permafrost: development and challenges of a young research field, J. Glaciol., 56, 1043–1058, https://doi.org/10.3189/002214311796406121, 2010.
Harris, C. and Murton, J. B.: Interactions between glaciers and permafrost: an introduction, Geol. Soc. London, Spec. Publ., 242, 1–9, https://doi.org/10.1144/GSL.SP.2005.242.01.01, 2005.
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. a., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., Seppälä, M., Springman, S. M., and Vonder Mühll, D.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci. Rev., 92, 117–171, https://doi.org/10.1016/j.earscirev.2008.12.002, 2009.
Hartmann, D. L., Tank, A. M. G. K., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 159–254, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Hasler, A., Gruber, S., Font, M., and Dubois, A.: Advective heat transport in frozen rock clefts: conceptual model, laboratory experiments and numerical simulation, Permafrost Periglac., 22, 378–389, https://doi.org/10.1002/ppp.737, 2011a.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011b.
Hasler, A., Gruber, S., and Beutel, J.: Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, https://doi.org/10.1029/2011JF001981, 2012.
Hewitt, K.: Glaciers of the Karakoram Himalaya, Springer Netherlands, Dordrecht, 2014.
Hinkel, K. M. and Hurd, J. K.: Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, U.S.A., Arct. Antarct. Alpine Res., 38, 530–539, 2006.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope, A., Huntington, H. P., Jensen, A. M., Jia, G. J., Jorgenson, T., Kane, D. L., Klein, D. R., Kofinas, G., Lynch, A. H., Lloyd, A. H., McGuire, A. D., Nelson, F. E., Oechel, W. C., Osterkamp, T. E., Racine, C. H., Romanovsky, V. E., Stone, R. S., Stow, D. a., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker, M. D., Walker, D. a., Webber, P. J., Welker, J. M., Winker, K. S., and Yoshikawa, K.: Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 72, 251–298, https://doi.org/10.1007/s10584-005-5352-2, 2005.
Huggel, C., Gruber, S., and Wessels, R. L.: The 2005 Mt. Steller, Alaska, rock-ice avalanche: a large slope failure in cold permafrost, in: Proceedings of the 9th International Conference on Permafrost 2008, 747–752, Fairbanks, Alaska, USA, 2008.
Huggel, C., Gruber, S., and Korup, O.: Landslide hazards and climate change in high mountains, in: Treatise on Geomorphology, 13, 288–301, Elsevier Ltd., 2013.
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, 2015.
Ishikawa, M., Watanabe, T., and Nakamura, N.: Genetic differences of rock glaciers and the discontinuous mountain permafrost zone in Kanchanjunga Himal, Eastern Nepal, Permafrost Periglac., 12, 243–253, https://doi.org/10.1002/ppp.394, 2001.
Ishikawa, M., Fukui, K., Aoyama, M., Ikeda, A., Sawada, Y., and Matsuoka, N.: Mountain permafrost in Japan: distribution, landforms and thermal regimes, Zeitschrift für Geomorphol. Suppl. Issue, 130, 99–116, 2003.
Ishikawa, M., Sharkhuu, N., Zhang, Y., Kadota, T., and Ohata, T.: Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia, Permafrost Periglac., 16, 209–216, https://doi.org/10.1002/ppp.483, 2005.
Ives, J., Shrestha, R., and Mool, P.: Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment, ICIMOD, Kathmandu, Nepal, 2010.
Iwata, S., Ageta, Y., Sakai, A., Narama, C., and Naito, N.: Glacial goemorphology in the Lunana area in the Bhutan Himalaya: moraine stages, glacial lakes, and rock glaciers, Himal. J. Sci., 2, 164–165, 2004.
Jakob, M.: Active rock glaciers and the lower limit of discontinuous alpine permafrost, Khumbu Himalaya, Nepal, Permafrost Periglac., 3, 253–256, 1992.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, Dataset available from the CGIAR-CSI SRTM 90 m Database (http://srtm.csi.cgiar.org), 2008.
Jin, H., Yu, Q., Wang, S., and Lü, L.: Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming, Cold Reg. Sci. Technol., 53, 317–333, https://doi.org/10.1016/j.coldregions.2007.07.005, 2008a.
Jin, H., Sun, G., Yu, S., Jin, R., and He, R.: Symbiosis of marshes and permafrost in Da and Xiao Hinggan Mountains in northeastern China, Chinese Geogr. Sci., 18, 62–69, https://doi.org/10.1007/s11769-008-0062-0, 2008b.
Jin, H., He, R., Cheng, G., Wu, Q., Wang, S., Lü, L., and Chang, X.: Changes in frozen ground in the source area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts, Environ. Res. Lett., 4, 45206, https://doi.org/10.1088/1748-9326/4/4/045206, 2009.
Jobbágy, E. G. and Jackson, R. B.: Global controls of forest line elevation in the northern and southern hemispheres, Glob. Ecol. Biogeogr., 9, 253–268, 2000.
Kääb, A., Reynolds, J. M., and Haeberli, W.: Glacier and permafrost hazards in high mountains, in Global Change and Mountain Regions: An Overview of Current Knowledge, 225–234, 2005.
Kääb, A., Frauenfelder, R., and Roer, I.: On the response of rockglacier creep to surface temperature increase, Glob. Planet. Change, 56, 172–187, 2007.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., and Milly, P. C. D.: Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle, Nat. Geosci., October, 1–7, https://doi.org/10.1038/ngeo2269, 2014.
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E. J., Fujita, K., Geertsema, M., Miles, E. S., Steiner, J., Anderson, E., Bajracharya, S., Bawden, G. W., Breashears, D. F., Byers, A., Collins, B., Dhital, M. R., Donnellan, A., Evans, T. L., Geai, M. L., Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut, K., Huyck, C., Immerzeel, W. W., Liming, Jiang, Jibson, R., Kääb, A., Khanal, N. R., Kirschbaum, D., Kraaijenbrink, P. D. A., Lamsal, D., Shiyin, Liu, Mingyang, Lv, McKinney, D., Nahirnick, N. K., Zhuotong, Nan, Ojha, S., Olsenholler, J., Painter, T. H., Pleasants, M., Pratima, K. C., Yuan, Q. I., Raup, B. H., Regmi, D., Rounce, D. R., Sakai, A., Donghui, Shangguan, Shea, J. M., Shrestha, A. B., Shukla, A., Stumm, D., van der Kooij, M., Voss, K., Xin, Wang, Weihs, B., Wolfe, D., Lizong, Wu, Xiaojun, Yao, Yoder, M. R., and Young, N.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake, Science, https://doi.org/10.1126/science.aac8353, 2015.
Kattel, D. B. and Yao, T.: Recent temperature trends at mountain stations on the southern slope of the central Himalayas, J. Earth Syst. Sci., 122, 215–227, https://doi.org/10.1007/s12040-012-0257-8, 2013.
Kirkbride, M.: Debris-covered glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K., Encycl. Snow, Ice Glaciers, 190–192, https://doi.org/10.1007/978-90-481-2642-2, 2011.
Klimeš, L. and Doležal, J.: An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas, Ecography (Cop.), 33, 590–596, https://doi.org/10.1111/j.1600-0587.2009.05967.x, 2010.
Kokelj, S. V. and Burn, C. R.: Ground ice and soluble cations in near-surface permafrost, Inuvik, Northwest Territories, Canada, Permafrost Periglac., 14, 275–289, https://doi.org/10.1002/ppp.458, 2003.
Kokelj, S. V., Smith, C. A. S. and Burn, C. R.: Physical and chemical characteristics of the active layer and permafrost, Herschel Island, western Arctic Coast, Canada, Permafrost Periglac., 13, 171–185, https://doi.org/10.1002/ppp.417, 2002.
Kokelj, S. V., Riseborough, D., Coutts, R., and Kanigan, J. C. N.: Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications, Cold Reg. Sci. Technol., 64, 46–56, https://doi.org/10.1016/j.coldregions.2010.04.009, 2010.
Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 713–732, 2004.
Krysiecki, J., Bodin, X., and Schoeneich, P.: Collapse of the Bérard rock glacier (southern French Alps), Proc. 9th Int. Conf. Permafrost, Ext. Abstr., 153–154, 2008.
Kurylyk, B. L. and Watanabe, K.: The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils, Adv. Water Resour., 60, 160–177, https://doi.org/10.1016/j.advwatres.2013.07.016, 2013.
Li, S. and He, Y.: Features of permafrost in the West Kunlun Mountains, Bull. Glacier Res., 7, 161–167, 1989.
Lin, Z., Niu, F., Liu, H., and Lu, J.: Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau, Cold Reg. Sci. Technol., 65, 446–455, https://doi.org/10.1016/j.coldregions.2010.10.013, 2011.
Lin, Z., Burn, C. R., Niu, F., Luo, J., Liu, M., and Yin, G.: The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau, 26, 142–159, https://doi.org/10.1002/ppp.1840, 2015.
Lipovsky, P. S., Evans, S. G., Clague, J. J., Hopkinson, C., Couture, R., Bobrowsky, P., Ekström, G., Demuth, M. N., Delaney, K. B., Roberts, N. J., Clarke, G., and Schaeffer, A.: The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada, Landslides, 5, 445–455, https://doi.org/10.1007/s10346-008-0133-4, 2008.
Liu, J., Yang, B., and Qin, C.: Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet, Quatern. Int., 236, 75–81, https://doi.org/10.1016/j.quaint.2010.03.020, 2011.
Liu, X., Cheng, Z., Yan, L., and Yin, Z.-Y.: Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings, Global Planet. Change, 68, 164–174, https://doi.org/10.1016/j.gloplacha.2009.03.017, 2009.
Ma, Y., Zhang, Y., Zubrzycki, S., Guo, Y., and Farhan, S. B.: Hillslope-scale variability in seasonal frost depth and soil water content investigated by GPR on the southern margin of the sporadic permafrost zone on the Tibetan Plateau, Permafrost Periglac., 334, 321–334, https://doi.org/10.1002/ppp.1844, 2015.
Ma, Z. G., Wei, H. L., and Fu, C. B.: Progress in the research on the relationship between soil moisture and climate change (in Chinese), Adv. Earth Sci., 14, 299–305, 1999.
Mackay, J. R.: The world of underground ice, Ann. Assoc. Am. Geogr., 62, 1–22, https://doi.org/10.1111/j.1467-8306.1972.tb00839.x, 1972.
Mackay, J. R.: Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges, Permafrost Periglac., 1, 15–29, 1990.
Matsuoka, N.: Contemporary permafrost and periglaciation in Asian high mountains: an overview, Zeitschrift für Geomorphol. Suppl. Issue, 47, 145–166, 2003.
McRoberts, E. C. and Morgenstern, N. R.: The stability of thawing slopes, Can. Geotech. J., 11, 447–469, 1974.
Ménégoz, M., Gallée, H., and Jacobi, H. W.: Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations, Hydrol. Earth Syst. Sci., 17, 3921–3936, https://doi.org/10.5194/hess-17-3921-2013, 2013.
Ménégoz, M., Krinner, G., Balkanski, Y., Boucher, O., Cozic, A., Lim, S., Ginot, P., Laj, P., Gallée, H., Wagnon, P., Marinoni, A., and Jacobi, H. W.: Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations, Atmos. Chem. Phys., 14, 4237–4249, https://doi.org/10.5194/acp-14-4237-2014, 2014.
Moors, E. J., Groot, A., Biemans, H., van Scheltinga, C. T., Siderius, C., Stoffel, M., Huggel, C., Wiltshire, A., Mathison, C., Ridley, J., Jacob, D., Kumar, P., Bhadwal, S., Gosain, A. and Collins, D. N.: Adaptation to changing water resources in the Ganges basin, northern India, Environ. Sci. Policy, 14, 758–769, https://doi.org/10.1016/j.envsci.2011.03.005, 2011.
Muster, S., Langer, M., Heim, B., Westermann, S., and Boike, J.: Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia, Tellus B, 64, 1–19, https://doi.org/10.3402/tellusb.v64i0.17301, 2012.
Niu, F., Lin, Z., Liu, H., and Lu, J.: Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau, Geomorphology, 132, 222–233, https://doi.org/10.1016/j.geomorph.2011.05.011, 2011.
Niu, F., Luo, J., Lin, Z., Ma, W., and Lu, J.: Development and thermal regime of a thaw slump in the Qinghai–Tibet plateau, Cold Reg. Sci. Technol., 83–84, 131–138, https://doi.org/10.1016/j.coldregions.2012.07.007, 2012.
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Noetzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.: Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography, J. Geophys. Res., 112, F02S13, https://doi.org/10.1029/2006JF000545, 2007.
Osti, R. and Egashira, S.: Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal, Hydrol. Process., 23, 2943–2955, https://doi.org/10.1002/hyp.7405, 2009.
Østrem, G. and Ostrem, G.: Ice-cored moraines in Scandinavia, Geogr. Ann., 46, 282, https://doi.org/10.2307/520383, 1964.
Otto, J., Schrott, L., Jaboyedoff, M., and Dikau, R.: Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland), Earth Surf. Proc. Land., 34, 1726–1742, https://doi.org/10.1002/esp.1856, 2009.
Owen, L. A. and England, J.: Observations on rock glaciers in the Himalayas and Karakoram mountains of northern Pakistan and India, Geomorphology, 26, 199–213, https://doi.org/10.1016/S0169-555X(98)00059-2, 1998.
Palazzi, E., Hardenberg, J., and Von and Provenzale, A.: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios, J. Geophys. Res.-Atmos., 118, 85–100, https://doi.org/10.1029/2012JD018697, 2013.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Chang., 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., and Sharp, M. J.: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Pu, Z. and Xu, L.: MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM), Theor. Appl. Climatol., 97, 265–278, https://doi.org/10.1007/s00704-008-0074-9, 2009.
Qin, D. H., Liu, S. Y., and Li, P. J.: Snow cover distribution, variability, and response to climate change in western China, J. Clim., 19, 1820–1833, https://doi.org/10.1175/JCLI3694.1, 2006.
Rangecroft, S., Harrison, S., and Anderson, K.: Rock glaciers as water stores in the Bolivian Andes: an assessment of their hydrological importance, Arctic, Antarct. Alp. Res., 47, 89–98, https://doi.org/10.1657/AAAR0014-029, 2015.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed, B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.
Rastogi, S. P. and Narayan, S.: Permafrost in the Tso Kar Basin, Ladakh, in Proceedings of the Symposium for Snow, Ice and Glaciers, March 1999, Geological Survey of India Special Publication, 53, 315–319, 1999.
Ravanel, L., Allignol, F., Deline, P., Gruber, S., and Ravello, M.: Rock falls in the Mont Blanc Massif in 2007 and 2008, Landslides, 7, 493–501, https://doi.org/10.1007/s10346-010-0206-z, 2010.
Regmi, D.: Rock Glacier distribution and the lower limit of discontinuous mountain permafrost in the Nepal Himalaya, Proc. Ninth Int. Conf. Permafr. (NICOP), 29 June–3 July 2008, Alaska Fairbanks, 1475–1480, 2008.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quatern. Int., 65–66, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., Marchenko, S., Etzelmuller, B., Gruber, S., and Marchenko, S.: Recent advances in permafrost modelling, Permafrost Periglac., 19, 137–156, https://doi.org/10.1002/ppp, 2008.
Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C., and Kääb, A.: Observations and considerations on destabilizing active rock glaciers in the European Alps, Ninth Int. Conf. Permafr., 4, 1505–1510, https://doi.org/10.5167/uzh-6082, 2008.
Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost, Permafrost Periglac., 11, 219–239, https://doi.org/10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7, 2000.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009: A synthesis, Permafrost Periglac., 21, 106–116, https://doi.org/10.1002/ppp.689, 2010.
Ryser, C., Lüthi, M., Blindow, N., Suckro, S., Funk, M., and Bauder, A.: Cold ice in the ablation zone: Its relation to glacier hydrology and ice water content, J. Geophys. Res.-Earth, 118, 693–705, https://doi.org/10.1029/2012JF002526, 2013.
Salerno, F., Guyennon, N., Thakuri, S., Viviano, G., Romano, E., Vuillermoz, E., Cristofanelli, P., Stocchi, P., Agrillo, G., Ma, Y., and Tartari, G.: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013), The Cryosphere, 9, 1229–1247, https://doi.org/10.5194/tc-9-1229-2015, 2015.
Salerno, F., Thakuri, S., Guyennon, N., Viviano, G., and Tartari, G.: Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds, The Cryosphere, 10, 1433–1448, https://doi.org/10.5194/tc-10-1433-2016, 2016.
Schiemann, R., Lüthi, D., Vidale, P. L., and Schär, C.: The precipitation climate of Central Asia – intercomparison of observational and numerical data sources in a remote semiarid region, Int. J. Climatol., 28, 295–314, https://doi.org/10.1002/joc.1532, 2008.
Schmid, M.-O., Baral, P., Gruber, S., Shahi, S., Shrestha, T., Stumm, D., and Wester, P.: Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth, The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, 2015.
Schneider, D., Huggel, C., Haeberli, W., and Kaitna, R.: Unraveling driving factors for large rock-ice avalanche mobility, Earth Surf. Proc. Land., 36, 1948–1966, https://doi.org/10.1002/esp.2218, 2011.
Schuur, E. A. G., McGuire, A. D., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., and Kuhry, P.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shaoling, W., Huijun, J., Shuxun, L., and Lin, Z.: Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts, Permafrost Periglac., 11, 43–53, 2000.
Shea, J. M., Wagnon, P., Immerzeel, W. W., Biron, R., Brun, F., and Pellicciotti, F.: A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya, Int. J. Water Resour. D., 31, 174–200, https://doi.org/10.1080/07900627.2015.1020417, 2015.
Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., and Ganju, A.: Climate-change studies in the western Himalaya, Ann. Glaciol., 51, 105–112, https://doi.org/10.3189/172756410791386508, 2010.
Shiraiwa, T.: Freeze-thaw activities and rock breakdown in the Langtang Valley, Nepal Himalaya, Environ. Sci. Hokkaido Univ. J. Grad. Sch. Environ. Sci., 15, 1–12, 1992.
Shrestha, A. B., Wake, C. P., Mayewski, P. A., and Dibb, J. E.: Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94, J. Clim., 12, 2775–2786, https://doi.org/10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;2, 1999.
Shroder, J. F., Bishop, M. P., Copland, L., and Sloan, V. F.: Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan, Geogr. Ann. A, 82, 17–31, https://doi.org/10.1111/j.0435-3676.2000.00108.x, 2000.
Sorg, A., Kaab, A., Roesch, A., Bigler, C., and Stoffel, M.: Contrasting responses of Central Asian rock glaciers to global warming, Sci. Repoatrs, 5, 1–6, https://doi.org/10.1038/srep08228, 2015.
Tahir, A. A., Chevallier, P., Arnaud, Y., and Ahmad, B.: Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan, Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011, 2011.
Thies, H., Nickus, U., Mair, V., Tessadri, R., Tait, D., Thaler, B., and Psenner, R.: Unexpected response of high Alpine Lake waters to climate warming., Environ. Sci. Technol., 41, 7424–7429, 2007.
Thies, H., Nickus, U., Tolotti, M., Tessadri, R., and Krainer, K.: Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams, Cold Reg. Sci. Technol., 96, 77–85, https://doi.org/10.1016/j.coldregions.2013.06.006, 2013.
Vonder Mühll, D., Nötzli, J., and Roer, I.: PERMOS – A comprehensive monitoring network of mountain permafrost in the Swiss Alps, Proc. 9th Int. Conf. Permafr., 1869–1874, https://doi.org/10.5167/uzh-4288, 2008.
Vuichard, D. and Zimmermann, M.: The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: cause and consequences, Mt. Res. Dev., 7, 91–110, https://doi.org/10.2307/3673305, 1987.
Waller, R. I., Murton, J. B., and Kristensen, L.: Glacier–permafrost interactions: Processes, products and glaciological implications, Sediment. Geol., 255–256, 1–28, https://doi.org/10.1016/j.sedgeo.2012.02.005, 2012.
Wang, B. and French, H.: Permafrost on the Tibet plateau, China, Quaternary Sci. Rev., 14, 255–274, 1995.
Watanabe, T., Kameyama, S., and Sato, T.: Imja glacier dead-ice melt rates and changes in a supra-glacial lake, 1989-1994, Khumbu Himal, Nepal: danger of lake drainage, Mt. Res. Dev., 15, 293–300, 1995.
Westermann, S., Østby, T. I., Gisnås, K., Schuler, T. V., and Etzelmüller, B.: A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data, The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015, 2015.
Williams, M. W., Knauf, M., Caine, N., Liu, F., and Verplanck, P. L.: Geochemistry and source waters of rock glacier outflow, Colorado Front Range, Permafrost Periglac., 17, 13–33, https://doi.org/10.1002/ppp.535, 2006.
Winiger, M., Gumpert, M., and Yamout, H.: Karakorum-Hindukush-western Himalaya: assessing high-altitude water resources, Hydrol. Process., 19, 2329–2338, https://doi.org/10.1002/hyp.5887, 2005.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Woo, M., Kane, D. L., Carey, S. K., and Yang, D.: Progress in permafrost hydrology in the new millennium, Permafrost Periglac., 19, 237–254, https://doi.org/10.1002/ppp.613, 2008.
Wu, Z., Barosh, P. J., Hu, D., Wu, Z., Peisheng, Y., Qisheng, L., and Chunjing, Z.: Migrating pingos in the permafrost region of the Tibetan Plateau, China and their hazard along the Golmud–Lhasa railway, Eng. Geol., 79, 267–287, https://doi.org/10.1016/j.enggeo.2005.02.003, 2005.
Xie, A., Ren, J., Qin, X., and Kang, S.: Reliability of NCEP/NCAR reanalysis data in the Himalayas/Tibetan Plateau, J. Geogr. Sci., 17, 421–430, https://doi.org/10.1007/s11442-007-0421-2, 2007.
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G.: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth-Sci. Rev., 103, 31–44, https://doi.org/10.1016/j.earscirev.2010.07.002, 2010.
Yang, Z., Ou, Y. H., Xu, X., Zhao, L., Song, M., and Zhou, C.: Effects of permafrost degradation on ecosystems, Acta Ecol. Sin., 30, 33–39, https://doi.org/10.1016/j.chnaes.2009.12.006, 2010.
Yang, X., Zhang, T., Qin, D., Kang, S., and Qin, X.: Characteristics and changes in air temperature and glacier's response on the north slope of Mt. Qomolangma (Mt. Everest), Arct. Antarct. Alp. Res., 43, 147–160, https://doi.org/10.1657/1938-4246-43.1.147, 2011.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Chang., 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Yin, Z.-Y., Zhang, X., Liu, X., Colella, M., and Chen, X.: An Assessment of the Biases of Satellite Rainfall Estimates over the Tibetan Plateau and Correction Methods Based on Topographic Analysis, J. Hydrometeorol., 9, 301–326, https://doi.org/10.1175/2007JHM903.1, 2008.
Zhai, P., Zhang, X., Wan, H., and Pan, X.: Trends in total precipitation and frequency of daily precipitation extremes over China, J. Clim., 18, 1096–1108, https://doi.org/10.1175/JCLI-3318.1, 2005.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Zhang, T., Baker, T. H. W., Cheng, G., and Wu, Q.: The Qinghai–Tibet Railroad: A milestone project and its environmental impact, Cold Reg. Sci. Technol., 53, 229–240, https://doi.org/10.1016/j.coldregions.2008.06.003, 2008.
Zhang, Y.: Spatio-temporal features of permafrost thaw projected from long-term high-resolution modeling for a region in the Hudson Bay Lowlands in Canada, J. Geophys. Res.-Earth, 118, 542–552, https://doi.org/10.1002/jgrf.20045, 2013.
Zhisheng, A., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411, 62–66, https://doi.org/10.1038/35075035, 2001.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Climate change. Permafrost and the global carbon budget, Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908, 2006.
Short summary
We review what can be inferred about permafrost in the mountains of the Hindu Kush Himalaya region. This is important because the area of permafrost exceeds that of glaciers in this region. Climate change will produce diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To mitigate this, a better understanding of high-elevation permafrost in subtropical latitudes as well as the pathways connecting environmental change and human livelihoods, is needed.
We review what can be inferred about permafrost in the mountains of the Hindu Kush Himalaya...
Special issue