Articles | Volume 10, issue 5
The Cryosphere, 10, 2203–2215, 2016
https://doi.org/10.5194/tc-10-2203-2016
The Cryosphere, 10, 2203–2215, 2016
https://doi.org/10.5194/tc-10-2203-2016

Research article 23 Sep 2016

Research article | 23 Sep 2016

Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery

Joshua M. Maurer et al.

Related authors

Glacier response to Holocene warmth inferred from in situ 10Be and 14C bedrock analyses in Steingletscher's forefield (central Swiss Alps)
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022,https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Early Holocene cold snaps and their expression in the moraine record of the eastern European Alps
Sandra M. Braumann, Joerg M. Schaefer, Stephanie M. Neuhuber, Christopher Lüthgens, Alan J. Hidy, and Markus Fiebig
Clim. Past, 17, 2451–2479, https://doi.org/10.5194/cp-17-2451-2021,https://doi.org/10.5194/cp-17-2451-2021, 2021
Short summary
Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021,https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021,https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Glacial limitation of tropical mountain height
Maxwell T. Cunningham, Colin P. Stark, Michael R. Kaplan, and Joerg M. Schaefer
Earth Surf. Dynam., 7, 147–169, https://doi.org/10.5194/esurf-7-147-2019,https://doi.org/10.5194/esurf-7-147-2019, 2019
Short summary

Related subject area

Alpine Glaciers
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Strong acceleration of glacier area loss in the Greater Caucasus over the past two decades
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-312,https://doi.org/10.5194/tc-2021-312, 2021
Revised manuscript accepted for TC
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021,https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021,https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary

Cited articles

Abrams, M.: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform, Int. J. Remote Sens., 21, 847–859, 2000.
Atwood, D., Meyer, F., and Arendt, A.: Using L-band SAR coherence to delineate glacier extent, Can. J. Remote Sens., 36, S186–S195, 2010.
Bajracharya, S. R., Maharjan, S. B., and Shrestha, F.: The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data, Ann. Glaciol., 55, 159–166, 2014.
Basnett, S., Kulkarni, A. V., and Bolch, T.: The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India, J. Glaciol., 59, 1035–1046, 2013.
Bay, H., Tuytelaars, T., and Van Gool, L.: Anonymous Surf: Speeded up robust features, Springer, 404–417, 2006.
Download
Short summary
Here we utilize declassified spy satellite imagery to quantify ice volume loss of glaciers in the eastern Himalayas over approximately the last three decades. Clean-ice and debris-covered glaciers show similar magnitudes of ice loss, while calving glaciers are contributing a disproportionately large amount to total ice loss. Results highlight important physical processes affecting the ice mass budget and associated water resources in the Himalayas.