Articles | Volume 10, issue 4
The Cryosphere, 10, 1415–1425, 2016
https://doi.org/10.5194/tc-10-1415-2016
The Cryosphere, 10, 1415–1425, 2016
https://doi.org/10.5194/tc-10-1415-2016

Research article 08 Jul 2016

Research article | 08 Jul 2016

About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice

Sandra Schwegmann et al.

Related authors

MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021,https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Arctic Sea Ice Thickness Estimation Based on CryoSat-2 Radar Altimeter and Sentinel-1 Dual-Polarized SAR
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-185,https://doi.org/10.5194/tc-2021-185, 2021
Preprint under review for TC
Short summary
A comparison between Envisat and ICESat sea ice thickness in the Antarctic
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-227,https://doi.org/10.5194/tc-2021-227, 2021
Preprint under review for TC
Short summary
Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021,https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Retrieval and parametrisation of sea-ice bulk density from airborne multi-sensor measurements
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-149,https://doi.org/10.5194/tc-2021-149, 2021
Preprint under review for TC
Short summary

Related subject area

Sea Ice
Meltwater sources and sinks for multiyear Arctic sea ice in summer
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021,https://doi.org/10.5194/tc-15-4517-2021, 2021
Short summary
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021,https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Calibration of sea ice drift forecasts using random forest algorithms
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021,https://doi.org/10.5194/tc-15-3989-2021, 2021
Short summary
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811, https://doi.org/10.5194/tc-15-3797-2021,https://doi.org/10.5194/tc-15-3797-2021, 2021
Short summary
The flexural strength of bonded ice
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021,https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary

Cited articles

Armitage, T. W. K. and Davidson, M. W. J.: Using the Interferometric Capabilities of the ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice Freeboard Retrievals, IEEE T. Geosci. Remote, 52, 529–536, 2014.
Behrendt, A., Dierking, W., Fahrbach, E., and Witte, H.: Sea ice draft in the Weddell Sea, measured by upward looking sonars, Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013, 2013.
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets, ISPRS Int. J. Geo-Inform., 1, 32–45, 2012.
Connor, L. N., Laxon, S. W., Ridout, A. L., Krabill, W. B., and McAdoo, D. C.: Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice, Remote Sens. Environ., 113, 563–570, 2009.
Dierking, W.: Laser Profiling of the Ice Surface-Topography during the Winter Weddell Gyre Study 1992, J. Geophys. Res.-Oceans, 100, 4807–4820, 1995.
Download
Short summary
Our study aimed to investigate whether CS-2 and Envisat radar freeboard can be merged without intermission biases in order to obtain a 20-year data set. The comparison revealed a reasonable regional agreement between radar freeboards derived from both sensors. Differences are mostly below 0.1 m for modal freeboard and even less for mean freeboard over winter months (May–October). The highest differences occur in regions with multi-year sea ice and along the coasts.