Articles | Volume 9, issue 3
The Cryosphere, 9, 989–1003, 2015
https://doi.org/10.5194/tc-9-989-2015
The Cryosphere, 9, 989–1003, 2015
https://doi.org/10.5194/tc-9-989-2015

Research article 12 May 2015

Research article | 12 May 2015

Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics

J. Krug et al.

Related authors

Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3)
Lionel Favier, Nicolas C. Jourdain, Adrian Jenkins, Nacho Merino, Gaël Durand, Olivier Gagliardini, Fabien Gillet-Chaulet, and Pierre Mathiot
Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019,https://doi.org/10.5194/gmd-12-2255-2019, 2019
Short summary
A Maxwell elasto-brittle rheology for sea ice modelling
Véronique Dansereau, Jérôme Weiss, Pierre Saramito, and Philippe Lattes
The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016,https://doi.org/10.5194/tc-10-1339-2016, 2016
Short summary
Reducing uncertainties in projections of Antarctic ice mass loss
G. Durand and F. Pattyn
The Cryosphere, 9, 2043–2055, https://doi.org/10.5194/tc-9-2043-2015,https://doi.org/10.5194/tc-9-2043-2015, 2015
Short summary
Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015,https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary

Related subject area

Numerical Modelling
Snow cover duration trends observed at sites and predicted by multiple models
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020,https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020,https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020,https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary
Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020,https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Toward a method for downscaling sea ice pressure for navigation purposes
Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante
The Cryosphere, 14, 3465–3478, https://doi.org/10.5194/tc-14-3465-2020,https://doi.org/10.5194/tc-14-3465-2020, 2020
Short summary

Cited articles

Amundson, J., Truffer, M., Lüthi, M., Fahnestock, M., West, M., and Motyka, R.: Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland, Geophys. Res. Lett., 35, L22501, https://doi.org/10.1029/2008GL035281, 2008.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Anderson, D. L.: Growth rate of sea ice, J. Glaciol., 3, 1170–1172, 1961.
Bartholomaus, T. C., Larsen, C. F., and O'Neel, S.: Does calving matter? Evidence for significant submarine melt, Earth Planet. Sc. Lett., 380, 21–30, 2013.
Benn, D. I., Hulton, N. R., and Mottram, R. H.: 'Calving laws', 'sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007a.